Choosing the Light Meal: Real-Time Aggregation of Calorie Information Reduces Meal Calories

卡路里 餐食 计算机科学 食品科学 热量理论 医学 化学 内科学 内分泌学
作者
Eric M. VanEpps,András Molnár,Julie S. Downs,George Loewenstein
出处
期刊:Journal of Marketing Research [SAGE]
卷期号:58 (5): 948-967 被引量:13
标识
DOI:10.1177/00222437211022367
摘要

Numeric labeling of calories on restaurant menus has been implemented widely, but scientific studies have generally not found substantial effects on calories ordered. The present research tests the impact of a feedback format that is more targeted at how consumers select and revise their meals: real-time aggregation of calorie content to provide dynamic feedback about meal calories via a traffic light label. Because these labels intuitively signal when a meal shifts from healthy to unhealthy (via the change from green to a yellow or red light), they prompt decision makers to course-correct in real time, before they finalize their choice. Results from five preregistered experiments (N = 11,900) show that providing real-time traffic light feedback about the total caloric content of a meal reduces calories in orders, even compared with similar aggregated feedback in numeric format. Patterns of ordering reveal this effect to be driven by people revising high-calorie orders more frequently, leading them to choose fewer and lower-calorie items. Consumers also like traffic light aggregation, indicating greater satisfaction with their order and greater intentions to return to restaurants that use them. The authors discuss how dynamic feedback using intuitive signals could yield benefits in contexts beyond food choice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Dongcong完成签到,获得积分0
1秒前
lizi完成签到,获得积分10
1秒前
1秒前
虚幻青曼发布了新的文献求助10
2秒前
曦曦啊关注了科研通微信公众号
2秒前
四月完成签到,获得积分10
2秒前
五岳居士完成签到,获得积分10
3秒前
3秒前
3秒前
NexusExplorer应助Messi采纳,获得10
4秒前
4秒前
挺好发布了新的文献求助10
4秒前
王誓言应助cxhznb采纳,获得10
4秒前
浮游应助NVLEKU采纳,获得10
5秒前
5秒前
5秒前
5秒前
nothing完成签到,获得积分10
5秒前
森诺发布了新的文献求助10
6秒前
6秒前
6秒前
我是老大应助麦子采纳,获得10
7秒前
Dreamstar发布了新的文献求助10
7秒前
7秒前
lenny发布了新的文献求助10
8秒前
胡桃完成签到,获得积分10
8秒前
杨震发布了新的文献求助10
8秒前
乐乐应助limerence采纳,获得10
8秒前
9秒前
9秒前
Iris发布了新的文献求助10
9秒前
10秒前
旮旯底有朕徐完成签到,获得积分10
10秒前
慕青应助一株多肉采纳,获得30
10秒前
mdjinij发布了新的文献求助10
10秒前
11秒前
Cher发布了新的文献求助10
11秒前
lllliiiii完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506224
求助须知:如何正确求助?哪些是违规求助? 4601750
关于积分的说明 14478529
捐赠科研通 4535703
什么是DOI,文献DOI怎么找? 2485613
邀请新用户注册赠送积分活动 1468474
关于科研通互助平台的介绍 1440997