消散
数学
对数
数学分析
正规化(语言学)
高粘滞
傅里叶变换
索波列夫空间
纯数学
应用数学
物理
量子力学
计算机科学
人工智能
心脏病学
医学
血液粘度
作者
Lihua Deng,Haifeng Shang
出处
期刊:Proceedings
[Cambridge University Press]
日期:2021-08-26
卷期号:152 (5): 1109-1138
被引量:6
摘要
This paper is concerned with the global regularity problem on the micropolar Rayleigh-Bénard problem with only velocity dissipation in $\mathbb {R}^{d}$ with $d=2\ or\ 3$ . By fully exploiting the special structure of the system, introducing two combined quantities and using the technique of Littlewood-Paley decomposition, we establish the global regularity of solutions to this system in $\mathbb {R}^{2}$ . Moreover, we obtain the global regularity for fractional hyperviscosity case in $\mathbb {R}^{3}$ by employing various techniques including energy methods, the regularization of generalized heat operators on the Fourier frequency localized functions and logarithmic Sobolev interpolation inequalities.
科研通智能强力驱动
Strongly Powered by AbleSci AI