Performance of artificial intelligence-based coronary artery calcium scoring in non-gated chest CT

医学 冠状动脉疾病 卡帕 放射科 一致性 人工智能 核医学 内科学 计算机科学 语言学 哲学
作者
Jie Xu,Jia Liu,Ning Guo,Linli Chen,Weixiang Song,Dajing Guo,Yu Zhang,Fang Zheng
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:145: 110034-110034 被引量:24
标识
DOI:10.1016/j.ejrad.2021.110034
摘要

To evaluate the risk category performance of artificial intelligence-based coronary artery calcium score (AI-CACS) software used in non-gated chest computed tomography (CT) on three types of CT machines, considering the manual method as the standard.A total of 901 patients who underwent both chest CT and electrocardiogram (ECG)-gated non-contrast-enhanced cardiac CT with the same equipment within a 3-month period were enrolled in the study. AI-CACS software was based on a deep learning algorithm and was trained on multi-vendor, multi-scanner, and multi-hospital anonymized data from the chest CT database. The AI-CACS was automatically obtained from chest CT data by the AI-CACS software, while the manual CACS was obtained from cardiac CT data by the manual method. The correlation of the AI-CACS and manual CACS, concordance rate and kappa value of the risk categories determined by the two methods were calculated. The chi-square test was used to evaluate the differences in risk categories among the three types of CT machines from different manufacturers. The risk category performance of the AI-CACS for dichotomous risk categories bounded by 0, 100 and 400 was assessed.The correlation of the AI-CACS with the manual CACS was ρ = 0.893 (p < 0.001). The Bland-Altman plot (AI-CACS minus manual CACS) showed a mean difference of -27.2 and 95% limits of agreement of -290.0 to 235.6. The agreement of risk categories for the CACS was kappa (κ) = 0.679 (p < 0.001), and the concordance rate was 80.6%. The risk categories determined by the AI-CACS software on three types of CT machines were not significantly different (p = 0.7543). As dichotomous risk categories bounded by 0, 100 and 400, the accuracy, kappa value, and area under the curve of the AI-CACS were 88.6% vs. 92.9% vs. 97.9%, 0.77 vs. 0.77 vs. 0.83, and 0.885 vs. 0.964 vs. 0.981, respectively.There was good correlation and agreement between the AI-CACS and manual CACS in terms of the risk category. It is feasible to obtain the CACS using AI software based on non-gated chest CT data in a short time without increasing the radiation dose or economic burden. The AI-CACS software algorithm has good clinical universality and can be applied to CT machines from different manufacturers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
无辜的大雁完成签到,获得积分10
5秒前
5秒前
Ava应助123采纳,获得20
6秒前
yan发布了新的文献求助10
6秒前
JL发布了新的文献求助10
6秒前
7秒前
sssssll发布了新的文献求助10
7秒前
11完成签到,获得积分10
8秒前
8秒前
thchiang完成签到 ,获得积分10
9秒前
YCW完成签到,获得积分10
10秒前
Gj发布了新的文献求助10
10秒前
Joker发布了新的文献求助10
10秒前
轻松的易烟完成签到,获得积分10
11秒前
火星上黎云完成签到,获得积分10
13秒前
科研通AI5应助和谐飞飞采纳,获得10
13秒前
13秒前
花生完成签到 ,获得积分10
14秒前
妍小猪发布了新的文献求助30
14秒前
16秒前
16秒前
17秒前
17秒前
17秒前
搜集达人应助甜崽小肉丸采纳,获得10
19秒前
20秒前
20秒前
安静复天完成签到,获得积分10
20秒前
21秒前
21秒前
Joker完成签到,获得积分10
21秒前
21秒前
许雯卓发布了新的文献求助10
22秒前
22秒前
22秒前
24秒前
24秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823923
求助须知:如何正确求助?哪些是违规求助? 3366220
关于积分的说明 10439526
捐赠科研通 3085305
什么是DOI,文献DOI怎么找? 1697342
邀请新用户注册赠送积分活动 816313
科研通“疑难数据库(出版商)”最低求助积分说明 769533