Performance of artificial intelligence-based coronary artery calcium scoring in non-gated chest CT

医学 冠状动脉疾病 卡帕 放射科 一致性 人工智能 核医学 内科学 计算机科学 语言学 哲学
作者
Jie Xu,Jia Liu,Ning Guo,Linli Chen,Weixiang Song,Dajing Guo,Yu Zhang,Fang Zheng
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:145: 110034-110034 被引量:27
标识
DOI:10.1016/j.ejrad.2021.110034
摘要

To evaluate the risk category performance of artificial intelligence-based coronary artery calcium score (AI-CACS) software used in non-gated chest computed tomography (CT) on three types of CT machines, considering the manual method as the standard.A total of 901 patients who underwent both chest CT and electrocardiogram (ECG)-gated non-contrast-enhanced cardiac CT with the same equipment within a 3-month period were enrolled in the study. AI-CACS software was based on a deep learning algorithm and was trained on multi-vendor, multi-scanner, and multi-hospital anonymized data from the chest CT database. The AI-CACS was automatically obtained from chest CT data by the AI-CACS software, while the manual CACS was obtained from cardiac CT data by the manual method. The correlation of the AI-CACS and manual CACS, concordance rate and kappa value of the risk categories determined by the two methods were calculated. The chi-square test was used to evaluate the differences in risk categories among the three types of CT machines from different manufacturers. The risk category performance of the AI-CACS for dichotomous risk categories bounded by 0, 100 and 400 was assessed.The correlation of the AI-CACS with the manual CACS was ρ = 0.893 (p < 0.001). The Bland-Altman plot (AI-CACS minus manual CACS) showed a mean difference of -27.2 and 95% limits of agreement of -290.0 to 235.6. The agreement of risk categories for the CACS was kappa (κ) = 0.679 (p < 0.001), and the concordance rate was 80.6%. The risk categories determined by the AI-CACS software on three types of CT machines were not significantly different (p = 0.7543). As dichotomous risk categories bounded by 0, 100 and 400, the accuracy, kappa value, and area under the curve of the AI-CACS were 88.6% vs. 92.9% vs. 97.9%, 0.77 vs. 0.77 vs. 0.83, and 0.885 vs. 0.964 vs. 0.981, respectively.There was good correlation and agreement between the AI-CACS and manual CACS in terms of the risk category. It is feasible to obtain the CACS using AI software based on non-gated chest CT data in a short time without increasing the radiation dose or economic burden. The AI-CACS software algorithm has good clinical universality and can be applied to CT machines from different manufacturers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小郑发布了新的文献求助10
刚刚
Mississippiecho完成签到,获得积分10
1秒前
任夏完成签到,获得积分10
2秒前
2秒前
犹豫野狼完成签到 ,获得积分10
2秒前
天天喝咖啡完成签到,获得积分10
2秒前
巴达天使完成签到,获得积分10
3秒前
3秒前
汉堡包应助机灵天蓝采纳,获得10
4秒前
111111发布了新的文献求助10
4秒前
魏海龙完成签到,获得积分10
4秒前
桃花不换酒完成签到,获得积分10
4秒前
觅兴完成签到,获得积分0
5秒前
慕青应助Li采纳,获得10
5秒前
6秒前
赤墨完成签到,获得积分10
6秒前
6秒前
蓝豆子完成签到 ,获得积分10
7秒前
酷波er应助9C采纳,获得10
7秒前
赘婿应助MAOJCFK采纳,获得10
7秒前
文艺听白完成签到,获得积分10
8秒前
任夏发布了新的文献求助10
8秒前
yue发布了新的文献求助10
8秒前
8秒前
张三完成签到,获得积分10
9秒前
xiying发布了新的文献求助10
9秒前
10秒前
XS_QI完成签到 ,获得积分10
10秒前
10秒前
高兴的玉米完成签到 ,获得积分10
10秒前
杨瑞东完成签到 ,获得积分10
10秒前
包容东蒽完成签到 ,获得积分10
12秒前
12秒前
浪迹天涯完成签到 ,获得积分10
12秒前
潇湘夜雨完成签到,获得积分10
13秒前
NexusExplorer应助zan12131采纳,获得10
13秒前
zwjy完成签到,获得积分10
13秒前
13秒前
14秒前
雪白夜南完成签到 ,获得积分10
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4100133
求助须知:如何正确求助?哪些是违规求助? 3637828
关于积分的说明 11527534
捐赠科研通 3346845
什么是DOI,文献DOI怎么找? 1839399
邀请新用户注册赠送积分活动 906727
科研通“疑难数据库(出版商)”最低求助积分说明 823934