Performance of artificial intelligence-based coronary artery calcium scoring in non-gated chest CT

医学 冠状动脉疾病 卡帕 放射科 一致性 人工智能 核医学 内科学 计算机科学 语言学 哲学
作者
Jie Xu,Jia Liu,Ning Guo,Linli Chen,Weixiang Song,Dajing Guo,Yu Zhang,Fang Zheng
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:145: 110034-110034 被引量:37
标识
DOI:10.1016/j.ejrad.2021.110034
摘要

To evaluate the risk category performance of artificial intelligence-based coronary artery calcium score (AI-CACS) software used in non-gated chest computed tomography (CT) on three types of CT machines, considering the manual method as the standard.A total of 901 patients who underwent both chest CT and electrocardiogram (ECG)-gated non-contrast-enhanced cardiac CT with the same equipment within a 3-month period were enrolled in the study. AI-CACS software was based on a deep learning algorithm and was trained on multi-vendor, multi-scanner, and multi-hospital anonymized data from the chest CT database. The AI-CACS was automatically obtained from chest CT data by the AI-CACS software, while the manual CACS was obtained from cardiac CT data by the manual method. The correlation of the AI-CACS and manual CACS, concordance rate and kappa value of the risk categories determined by the two methods were calculated. The chi-square test was used to evaluate the differences in risk categories among the three types of CT machines from different manufacturers. The risk category performance of the AI-CACS for dichotomous risk categories bounded by 0, 100 and 400 was assessed.The correlation of the AI-CACS with the manual CACS was ρ = 0.893 (p < 0.001). The Bland-Altman plot (AI-CACS minus manual CACS) showed a mean difference of -27.2 and 95% limits of agreement of -290.0 to 235.6. The agreement of risk categories for the CACS was kappa (κ) = 0.679 (p < 0.001), and the concordance rate was 80.6%. The risk categories determined by the AI-CACS software on three types of CT machines were not significantly different (p = 0.7543). As dichotomous risk categories bounded by 0, 100 and 400, the accuracy, kappa value, and area under the curve of the AI-CACS were 88.6% vs. 92.9% vs. 97.9%, 0.77 vs. 0.77 vs. 0.83, and 0.885 vs. 0.964 vs. 0.981, respectively.There was good correlation and agreement between the AI-CACS and manual CACS in terms of the risk category. It is feasible to obtain the CACS using AI software based on non-gated chest CT data in a short time without increasing the radiation dose or economic burden. The AI-CACS software algorithm has good clinical universality and can be applied to CT machines from different manufacturers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
jzt12138发布了新的文献求助10
2秒前
liao完成签到 ,获得积分10
2秒前
lwz2688完成签到,获得积分10
4秒前
CipherSage应助czc采纳,获得10
4秒前
5秒前
SciGPT应助怕孤独的幻竹采纳,获得10
5秒前
海风奕婕完成签到,获得积分10
6秒前
6秒前
7秒前
hjp完成签到,获得积分20
7秒前
7秒前
liu.lzy完成签到,获得积分10
7秒前
Lo发布了新的文献求助10
8秒前
赵坤煊发布了新的文献求助20
8秒前
9秒前
小玲子发布了新的文献求助10
9秒前
hjp发布了新的文献求助10
10秒前
情怀应助11采纳,获得10
10秒前
Owen应助今天没带脑子采纳,获得10
11秒前
小方完成签到,获得积分20
11秒前
CheeseD发布了新的文献求助10
12秒前
Roin完成签到,获得积分10
12秒前
SASA发布了新的文献求助10
12秒前
义气丹雪完成签到,获得积分10
13秒前
难过小凝关注了科研通微信公众号
13秒前
落寞皓轩发布了新的文献求助10
13秒前
王者归来完成签到,获得积分10
14秒前
阳光完成签到,获得积分10
16秒前
知犯何逆发布了新的文献求助10
17秒前
17秒前
18秒前
睿123完成签到 ,获得积分10
18秒前
19秒前
辛勤心情发布了新的文献求助10
21秒前
22秒前
武雨寒发布了新的文献求助10
23秒前
殷勤的紫槐给一只不受管束的小狸Miao的求助进行了留言
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736699
求助须知:如何正确求助?哪些是违规求助? 5367371
关于积分的说明 15333576
捐赠科研通 4880461
什么是DOI,文献DOI怎么找? 2622875
邀请新用户注册赠送积分活动 1571758
关于科研通互助平台的介绍 1528582