Detection of Train Driver Fatigue and Distraction Based on Forehead EEG: A Time-Series Ensemble Learning Method

分散注意力 脑电图 前额 计算机科学 人工智能 系列(地层学) 集成学习 认知心理学 心理学 医学 生物 外科 古生物学 神经科学
作者
Chaojie Fan,Yong Peng,Shuangling Peng,Honghao Zhang,Yuankai Wu,Sam Kwong
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 13559-13569 被引量:70
标识
DOI:10.1109/tits.2021.3125737
摘要

Train driver fatigue and distraction are the main reasons for railway accidents. One of the new technologies to monitor drivers is by using the EEG signals, which provides vital signs monitoring of fatigue and distraction. However, monitoring systems involving full-head scalp EEG are time-consuming and uncomfortable for the driver. The aim of this study was to evaluate the suitability of recently introduced forehead EEG for train driver fatigue and distraction detection. We first constructed a unique dataset with experienced train drivers driving in a simulated train driving environment. The EEG signals were collected from an EEG recording device placed on the driver's forehead, and numerous features including energy, entropy, rhythmic energy ratio and frontal asymmetry ratio were extracted from the EEG signals. Therefore, a time-series ensemble learning method was proposed to perform fatigue and distraction detection based on the extracted feature. The proposed method outperforms other popular machine learning algorithms including Support Vector Machine(SVM), K-Nearest Neighbor(KNN), Decision Tree(DT), and Long short-term memory(LSTM). The proposed method is stable and convenient to meet the real-time requirement of train driver monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lym97完成签到 ,获得积分10
2秒前
irvinzp完成签到,获得积分10
2秒前
PhD发布了新的文献求助10
4秒前
DPH完成签到 ,获得积分10
5秒前
田様应助清新的寄翠采纳,获得10
8秒前
桐桐应助一勺采纳,获得10
9秒前
9秒前
10秒前
小二郎应助三星导弹船采纳,获得10
13秒前
简简单单完成签到,获得积分10
14秒前
鳗鱼不尤完成签到,获得积分10
14秒前
15秒前
16秒前
激动的晓筠完成签到 ,获得积分10
16秒前
20秒前
冰魂应助free采纳,获得10
21秒前
23秒前
文艺的枫叶完成签到 ,获得积分10
25秒前
25秒前
许安发布了新的文献求助10
25秒前
猪猪hero应助一直很安静采纳,获得10
25秒前
MX应助啦啦啦采纳,获得10
26秒前
清新的寄翠完成签到,获得积分10
26秒前
ZLY发布了新的文献求助10
27秒前
29秒前
Owen应助星睿采纳,获得10
29秒前
谢青关注了科研通微信公众号
29秒前
善学以致用应助小熊饼干采纳,获得10
31秒前
一直很安静完成签到,获得积分20
33秒前
啾啾发布了新的文献求助10
34秒前
35秒前
36秒前
可爱的函函应助zz采纳,获得30
36秒前
36秒前
三星导弹船完成签到,获得积分10
37秒前
CodeCraft应助安静的幻灵采纳,获得10
37秒前
hyl发布了新的文献求助10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
赘婿应助科研通管家采纳,获得10
37秒前
许甜甜鸭应助科研通管家采纳,获得10
37秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823579
求助须知:如何正确求助?哪些是违规求助? 3365946
关于积分的说明 10438454
捐赠科研通 3085109
什么是DOI,文献DOI怎么找? 1697172
邀请新用户注册赠送积分活动 816235
科研通“疑难数据库(出版商)”最低求助积分说明 769462