Transepithelial Delivery of Insulin Conjugated with Phospholipid-Mimicking Polymers via Biomembrane Fusion-Mediated Transcellular Pathways

跨细胞 磷脂 并行传输 生物膜 共轭体系 脂质双层融合 化学 胰岛素 细胞生物学 生物物理学 生物化学 聚合物 生物 医学 内科学 磁导率 有机化学
作者
Hiroaki Hatano,Fanlu Meng,Momoko Sakata,Akira Matsumoto,Kazuhíko Ishihara,Yuji Miyahara,Tatsuro Goda
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.3890358
摘要

Epithelial barriers that seal cell gaps by forming tight junctions to prevent the free permeation of nutrients, electrolytes, and drugs, are essential for maintaining homeostasis in multicellular organisms. The development of nanocarriers that can permeate epithelial tissues without compromising barrier function is key for establishing a safe and efficient drug delivery system (DDS). Previously, we have demonstrated that a water-soluble phospholipid-mimicking random copolymer, poly(2-methacryloyloxyethyl phosphorylcholine30-random-n-butyl methacrylate70) (PMB30W), enters the cytoplasm of live cells by passive diffusion mechanisms, without damaging the cell membranes. The internalization mechanism was confirmed to be amphiphilicity-induced membrane fusion. In the present study, we demonstrated nonendocytic permeation of PMB30W through the model epithelial barriers of Madin-Darby canine kidney (MDCK) cell monolayers in vitro. The polymer penetrated epithelial MDCK monolayers via transcellular pathways without breaching the barrier functions. This was confirmed by our unique assay that can monitor the leakage of the proton as the smallest indicator across the epithelial barriers. Moreover, nonendocytic transepithelial permeation was achieved when insulin was chemically conjugated with the phospholipid-mimicking nanocarrier. The bioactivity of insulin as a growth factor was found to be maintained even after translocation. These fundamental findings may aid the establishment of transepithelial DDS with advanced drug efficiency and safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
bkagyin应助nimeng123采纳,获得10
2秒前
戴一曼发布了新的文献求助10
2秒前
团子发布了新的文献求助50
3秒前
3秒前
Cyx发布了新的文献求助10
3秒前
66m37完成签到,获得积分10
3秒前
LISHAN完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
samar发布了新的文献求助10
6秒前
6秒前
支雨泽发布了新的文献求助10
7秒前
Max完成签到,获得积分10
7秒前
7秒前
斯文败类应助cc采纳,获得10
8秒前
8秒前
缪甲烷发布了新的文献求助10
8秒前
狂野雨灵完成签到,获得积分10
9秒前
9秒前
9秒前
Fnoopy发布了新的文献求助10
11秒前
CCY完成签到,获得积分10
11秒前
123发布了新的文献求助10
11秒前
FashionBoy应助毅然来采纳,获得10
12秒前
nimeng123完成签到,获得积分10
12秒前
12秒前
xuzichuang发布了新的文献求助10
12秒前
王聪颖发布了新的文献求助10
12秒前
13秒前
bohn123完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
Ldq发布了新的文献求助10
14秒前
大胆太阳发布了新的文献求助10
14秒前
LISHAN发布了新的文献求助20
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813089
求助须知:如何正确求助?哪些是违规求助? 3357603
关于积分的说明 10387183
捐赠科研通 3074772
什么是DOI,文献DOI怎么找? 1688994
邀请新用户注册赠送积分活动 812496
科研通“疑难数据库(出版商)”最低求助积分说明 767130