Machine learning exploration of the critical factors for CO2 adsorption capacity on porous carbon materials at different pressures

吸附 微型多孔材料 材料科学 多孔性 体积热力学 碳纤维 介孔材料 化学工程 相关系数 环境科学 热力学 计算机科学 化学 复合材料 有机化学 机器学习 工程类 物理 复合数 催化作用
作者
Xinzhe Zhu,Daniel C.W. Tsang,Lei Wang,Zhishan Su,Deyi Hou,Liangchun Li,Jin Shang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:273: 122915-122915 被引量:137
标识
DOI:10.1016/j.jclepro.2020.122915
摘要

The growing environmental issues caused by CO2 emission accelerate the development of carbon capture and storage (CCS), especially bio-energy CCS as an environment-friendly and sustainable technique to capture CO2 using porous carbon materials (PCMs) produced from various biomass wastes. This study developed quantitative structure-property relationship models based on 6244 CO2 adsorption datasets of 155 PCMs to predict the CO2 adsorption capacity and analyze the relative significance of physicochemical properties. The results suggested that random forest (RF) models showed good accuracy and predictive performance based on physicochemical parameters of PCMs and adsorption conditions with the test dataset (R2 > 0.9). In general, textural properties were more crucial than chemical compositions of porous carbons to the change of CO2 adsorption capacity. At a low pressure (0.1 bar), the volumes of mesopore and micropore played an important role according to the RF analysis, but had a negative correlation with CO2 adsorption capacity based on the Pearson correlation coefficient (PCC) analysis. The relative importance of ultra-micropore increased along with the increase of pressure. The PCC value between ultra-micropore volume and CO2 uptake amount was up to 0.715 (p < 0.01) at 1 bar and 0 °C. The influence of chemical compositions was complex. The N content was confirmed to positively correlate to the CO2 adsorption capacity but its contribution was much lower than that of ultra-micropores. This study provided a new approach for fostering the rational design of porous carbons for CO2 capture via statistical analysis and machine learning method, which facilitated adsorbents screening for the cleaner production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助Rashalin采纳,获得10
1秒前
1秒前
BINGBING应助上官从菡采纳,获得50
3秒前
晴朗完成签到,获得积分10
3秒前
大模型应助τ涛采纳,获得10
3秒前
马麻薯完成签到,获得积分10
3秒前
科研gogogo完成签到,获得积分10
3秒前
jam发布了新的文献求助10
5秒前
泊声发布了新的文献求助10
5秒前
完美世界应助LYHZAU采纳,获得10
5秒前
万能图书馆应助lucky采纳,获得10
5秒前
岁岁菌完成签到,获得积分10
6秒前
7秒前
慕青应助zcious采纳,获得10
9秒前
爱学习的YY完成签到 ,获得积分10
10秒前
小彤完成签到 ,获得积分10
10秒前
简奥斯汀发布了新的文献求助10
11秒前
季双洋发布了新的文献求助10
12秒前
空白完成签到,获得积分10
13秒前
chen完成签到,获得积分10
14秒前
科研助手6应助hsialy采纳,获得10
14秒前
坚强的哈密瓜完成签到,获得积分10
14秒前
满意花卷完成签到 ,获得积分10
15秒前
科研通AI5应助绝望核弹采纳,获得10
15秒前
bali完成签到,获得积分10
15秒前
科研通AI5应助传统的鹏涛采纳,获得10
15秒前
DJ发布了新的文献求助20
15秒前
15秒前
jam完成签到,获得积分10
15秒前
泊声完成签到,获得积分10
17秒前
18秒前
迪仔完成签到 ,获得积分10
18秒前
化学兔八哥完成签到,获得积分20
20秒前
俭朴晓凡完成签到,获得积分10
20秒前
fish发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
王zz发布了新的文献求助10
22秒前
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843549
求助须知:如何正确求助?哪些是违规求助? 3385850
关于积分的说明 10542709
捐赠科研通 3106659
什么是DOI,文献DOI怎么找? 1711004
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774380