清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Effect of Particle Size and Anion Vacancies on Electrochemical Performances of Potassium Manganese Hexacyanoferrate for Potassium-Ion Batteries

电化学 电解质 离子 粒径 离子键合 粒子(生态学) 扩散 离子交换 无机化学 材料科学 离子半径 电池(电) 化学 电极 物理化学 热力学 冶金 有机化学 功率(物理) 地质学 物理 海洋学
作者
Tomooki Hosaka,Taiga Fukabori,Kei Kubota,Haruka Kojima,Yuji Ito,Tsuyoshi Inose,Hirofumi Inoue,Masataka Takeuchi,Shinichi Komaba
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (2): 170-170
标识
DOI:10.1149/ma2020-022170mtgabs
摘要

K-ion battery (KIB) has recently attracted much attention as a potential high-voltage and high-power battery owing to low standard electrode potential of K/K + and fast ionic diffusion of K + ion in electrolyte solutions, respectively. 1 Among positive electrode materials reported so far, K x Mn[Fe(CN) 6 ] y (KMnHCF) is a promising material because of a high working potential (ca. 3.8 V vs. K/K + ). 2 Although the theoretical capacity of stoichiometric K 2 Mn[Fe(CN) 6 ] is as high as 155 mAh g –1 , the reported reversible capacities range from 40 to 140 mAh g –1 . 1 Moreover, the reason for the different capacities is still unclear. Previous studies on K x Fe[Fe(CN) 6 ] y proposed the potential two factors which may affect the electrochemical performance. These are particle size 3 and number of [Fe(CN) 6 ] n - anion vacancies. 4 However, the difficulty of independent controlling the particle size and number of anion vacancies has hindered understanding the impact of each factor. In this study, we investigated the effect of the factors on electrochemical performance by controlling the particle size and number of the anion vacancies via chelate assisted and ionic exchange synthesis, respectively. KMnHCFs were synthesized by direct precipitation with chelating agents or by ionic exchange from the NaMnHCF. Samples with small (S-KMnHCF) and large particle size (L-KMnHCF) precipitated in 0.2 M and 1 M potassium citrate solutions, respectively. Samples with a large number of vacancies (IE-KMnHCF) were obtained by the ionic exchange method. All the samples were carefully dehydrated at 200 °C under vacuum to ignore the effect of interstitial water. The samples were characterized by powder X-ray diffraction (XRD), inductively coupled plasma emission spectroscopy (ICP-AES), scanning electron microscopy (SEM), and galvanostatic charge/discharge measurements. Figure 1a shows the XRD patterns and their fitted pattern by Rietveld refinement of S-, L-, and IE-KMnHCFs. The diffraction patterns of all the samples were successfully fitted with the monoclinic structures ( P 2 1 / n ), and no crystalline impurities were confirmed. Rietveld refinement and ICP-AES revealed that the composition of S-, L-, and IE-KMnHCF were K 1.9 Mn[Fe(CN) 6 ] 1.0 , K 1.8 Mn[Fe(CN) 6 ] 0.99 □ 0.01 (□ = anion vacancy), and Na 0.10 K 1.6 Mn[Fe(CN) 6 ] 0.85 □ 0.15 , respectively. Thus, S- and L-KMnHCF have negligible numbers of [Fe(CN) 6 ] 4- vacancies, while IE-KMnHCF has many anion vacancies. SEM image of Figs. 1b–1d display that the particle size of S-KMnHCF was 100–200 nm, whereas the particle size of L- and IE-KMnHCF was approximately 1–2 μm. Figure 2 shows the initial charge/discharge curves for S-, L-, and IE-KMnHCF in K cells. S-KMnHCF delivered a large reversible capacity of 137 mAh g -1 , whereas L-KMnHCF showed a small reversible capacity of 49 mAh g -1 . In contrast, IE-KMnHCF exhibited a reversible capacity of 117 mAh g -1 despite the large particle size. The reason behind the relatively large capacity of IE-KMnHCF would be enhanced potassium ion diffusion caused by the [Fe(CN) 6 ] 4- vacancies. 4 In the presentation, we will also discuss the impact of the anion vacancies on K + ion diffusion barrier and structural changes during charge and discharge process. References T. Hosaka, K. Kubota, A. S. Hameed and S. Komaba, Chem. Rev., DOI: 10.1021/acs.chemrev.9b00463, in press . X. Bie, K. Kubota, T. Hosaka, K. Chihara and S. Komaba, J. Mater. Chem. A , 5 , 4325 (2017). G. He and L. F. Nazar, ACS Energy Lett. , 2 , 1122 (2017). M. Ishizaki, H. Ando, N. Yamada, K. Tsumoto, K. Ono, H. Sutoh, T. Nakamura, Y. Nakao and M. Kurihara, J. Mater. Chem. A , 7 , 4777 (2019). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xia完成签到,获得积分20
2秒前
11nn完成签到,获得积分10
4秒前
6秒前
嗜睡性粒细胞应助xia采纳,获得20
8秒前
未桑发布了新的文献求助10
11秒前
cadcae完成签到,获得积分10
23秒前
哲000完成签到 ,获得积分10
29秒前
藏锋完成签到 ,获得积分10
34秒前
桐桐应助科研通管家采纳,获得10
34秒前
斯文败类应助科研通管家采纳,获得10
34秒前
赵一完成签到 ,获得积分10
54秒前
WenJun完成签到,获得积分10
1分钟前
KINGAZX完成签到 ,获得积分10
1分钟前
徐涛完成签到 ,获得积分10
1分钟前
mojito完成签到 ,获得积分10
1分钟前
2分钟前
个性仙人掌完成签到 ,获得积分10
2分钟前
2分钟前
xmk发布了新的文献求助10
2分钟前
淞淞于我完成签到 ,获得积分10
2分钟前
NexusExplorer应助执着冬亦采纳,获得10
2分钟前
小呵点完成签到 ,获得积分10
2分钟前
SciGPT应助du采纳,获得10
3分钟前
3分钟前
帆帆帆完成签到 ,获得积分10
3分钟前
myp完成签到,获得积分10
3分钟前
科研狗完成签到 ,获得积分0
3分钟前
du发布了新的文献求助10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
amen完成签到 ,获得积分10
3分钟前
Yynnn完成签到 ,获得积分10
4分钟前
Owen应助科研通管家采纳,获得10
4分钟前
gwbk完成签到,获得积分10
4分钟前
JJ完成签到 ,获得积分0
4分钟前
lisa完成签到 ,获得积分10
4分钟前
知行者完成签到 ,获得积分10
4分钟前
alanbike完成签到,获得积分10
5分钟前
wangfaqing942完成签到 ,获得积分10
5分钟前
虞无声完成签到,获得积分10
5分钟前
江三村完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4945608
求助须知:如何正确求助?哪些是违规求助? 4209978
关于积分的说明 13086274
捐赠科研通 3990236
什么是DOI,文献DOI怎么找? 2184579
邀请新用户注册赠送积分活动 1199861
关于科研通互助平台的介绍 1113378