已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reinforcement learning-enabled genetic algorithm for school bus scheduling

强化学习 计算机科学 遗传算法 地铁列车时刻表 调度(生产过程) 增强学习 基于群体的增量学习 人工智能 机器学习 数学优化 数学 操作系统
作者
Eda Köksal Ahmed,Zengxiang Li,Bharadwaj Veeravalli,Shen Ren
出处
期刊:Journal of Intelligent Transportation Systems [Taylor & Francis]
卷期号:26 (3): 269-283 被引量:33
标识
DOI:10.1080/15472450.2020.1852082
摘要

In this paper, we focus on a bi-objective school bus scheduling optimization problem, which is a subset of vehicle fleet scheduling problems to transport students distributed across a designated area to the relevant schools. The problem being proven as NP-hard in the literature, we propose an algorithm that seamlessly integrates a reinforcement learning approach with a genetic algorithm. Our proposed algorithm utilizes the processed data supplied by our intelligent transportation system framework to decide the genetic algorithm parameters on-the-fly with the aid of reinforcement learning. With the active guidance of reinforcement learning, the efficiency of the genetic algorithm is improved, and the near-optimal schedule can be achieved in a shorter duration. To evaluate the model, we conducted experiments on a geospatial dataset comprising road networks, trip trajectories of buses, and the address of students. Results indicate that the genetic algorithm improves the travel distance and time compared to the existing schedule. Reinforcement learning-enabled genetic algorithm improves the performance and the objective function significantly, furthermore with a fewer number of generations compared to various state-of-the-art evolutionary algorithms. The saving by reinforcement learning-enabled genetic algorithm compared to the schedule by initial state generation process is 8.63% and 16.92% for the travel distance for buses and students, respectively, and 14.95% and 26.58% for the travel time for buses and students, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助科研通管家采纳,获得100
刚刚
李健应助科研通管家采纳,获得30
刚刚
大个应助科研通管家采纳,获得10
刚刚
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助虚幻的城采纳,获得10
刚刚
欣喜的以丹完成签到,获得积分10
4秒前
Lucas应助qly采纳,获得10
4秒前
6秒前
帮主哥哥应助polley采纳,获得50
7秒前
烟花应助Tracey16采纳,获得10
8秒前
9秒前
LQ完成签到,获得积分10
9秒前
小二郎应助欣喜的以丹采纳,获得10
9秒前
科研狗完成签到 ,获得积分0
10秒前
火火火发布了新的文献求助10
11秒前
12秒前
Non0完成签到,获得积分10
13秒前
14秒前
15秒前
独特绣连发布了新的文献求助10
18秒前
妖精发布了新的文献求助10
20秒前
21秒前
研友_J8D23n发布了新的文献求助10
21秒前
积极的香菇完成签到 ,获得积分10
21秒前
Liz完成签到 ,获得积分10
21秒前
dream完成签到 ,获得积分10
23秒前
23秒前
彭于晏应助刘宏坤采纳,获得10
24秒前
Jason完成签到 ,获得积分10
24秒前
MchemG应助xzy998采纳,获得10
24秒前
24秒前
24秒前
oyfff完成签到 ,获得积分10
25秒前
26秒前
27秒前
28秒前
今后应助欣喜的以丹采纳,获得10
30秒前
wanci应助鸭子不是鸭采纳,获得10
30秒前
姜姜发布了新的文献求助10
30秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824836
求助须知:如何正确求助?哪些是违规求助? 3367165
关于积分的说明 10444565
捐赠科研通 3086419
什么是DOI,文献DOI怎么找? 1698024
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769840