Real-Time Detection and Motion Recognition of Human Moving Objects Based on Deep Learning and Multi-Scale Feature Fusion in Video

计算机科学 人工智能 特征(语言学) 背景(考古学) 目标检测 深度学习 计算机视觉 比例(比率) 模式识别(心理学) 特征提取 古生物学 哲学 语言学 物理 量子力学 生物
作者
Gong Mei-mei,Yiming Shu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 25811-25822 被引量:46
标识
DOI:10.1109/access.2020.2971283
摘要

At present, human body moving target detection and recognition algorithms based on deep learning have made breakthrough progress. However, in some applications with high real-time requirements, the existing deep learning real-time detection and recognition network is difficult to achieve high detection accuracy. Therefore, how to achieve accurate positioning and recognition of human moving targets while ensuring real-time detection is still an urgent problem in this field. Based on the single shot multi-box detector (SSD) real-time detection network, this paper proposes a real-time detection positioning and recognition network based on multi-scale feature fusion (IMFF-SSD), which improves the positioning accuracy and identification accuracy. First, this article analyzes the multi-scale features extracted from the SSD network. It combines the position-sensitive information provided by low-level detail features with the context information provided by high-level semantic features through feature fusion, which effectively improves positioning accuracy of the target prediction layer in the SSD network. Secondly, a feature embedded prediction structure is designed to strengthen the semantics of target features without changing the spatial resolution of the SSD prediction layer, and embed low-scale detailed features in high-semantic features for collaborative prediction of targets. This improves the accuracy of the SSD network's recognition of human moving targets at all scales. The experimental results show that by combining the above two improvements, the real-time monitoring and recognition network based on multi-scale feature fusion proposed in this paper has achieved a greater degree of improvement in positioning accuracy and motion recognition accuracy than the original SSD, which is better than some current the human body moving object detection and recognition algorithm has great advantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿波电龙完成签到,获得积分10
刚刚
TheBugsss完成签到,获得积分10
刚刚
1秒前
卷心小菜狗应助谭访冬采纳,获得10
3秒前
6秒前
砍柴少年发布了新的文献求助10
12秒前
汉堡包应助风中的文龙采纳,获得50
13秒前
Akim应助砍柴少年采纳,获得10
16秒前
无心的秋珊完成签到 ,获得积分10
19秒前
大地上的鱼完成签到,获得积分10
21秒前
直率小霜完成签到,获得积分10
24秒前
zaozao完成签到,获得积分20
24秒前
量子星尘发布了新的文献求助10
26秒前
舆上帝同行完成签到,获得积分10
28秒前
Ybobo完成签到,获得积分10
30秒前
30秒前
applegood完成签到,获得积分10
30秒前
Microbiota完成签到,获得积分10
31秒前
33秒前
向日葵完成签到,获得积分10
35秒前
我是老大应助Ybobo采纳,获得10
35秒前
37秒前
42秒前
42秒前
害怕的水之完成签到,获得积分10
43秒前
tyh完成签到,获得积分10
43秒前
superming完成签到,获得积分20
44秒前
xy777关注了科研通微信公众号
44秒前
自觉忆山完成签到,获得积分10
44秒前
今后应助zaozao采纳,获得10
45秒前
45秒前
mmm完成签到 ,获得积分10
46秒前
山山完成签到,获得积分10
47秒前
47秒前
47秒前
科研通AI5应助oldyang采纳,获得150
48秒前
ooo娜完成签到 ,获得积分10
48秒前
dh关闭了dh文献求助
49秒前
欣欣发布了新的文献求助10
49秒前
詹姆斯哈登完成签到,获得积分10
50秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Building Quantum Computers 1078
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862618
求助须知:如何正确求助?哪些是违规求助? 3405159
关于积分的说明 10643298
捐赠科研通 3128526
什么是DOI,文献DOI怎么找? 1725335
邀请新用户注册赠送积分活动 830939
科研通“疑难数据库(出版商)”最低求助积分说明 779502