亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEG-based emotion recognition with deep convolutional neural networks

卷积神经网络 脑电图 模式识别(心理学) 计算机科学 情绪识别 唤醒 情绪分类 深度学习 人工智能 价(化学) 语音识别 心理学 神经科学 物理 量子力学
作者
Mehmet Akif Özdemir,Mürşide Değirmenci,Elif İzci,Aydın Akan
出处
期刊:Biomedizinische Technik [De Gruyter]
卷期号:66 (1): 43-57 被引量:72
标识
DOI:10.1515/bmt-2019-0306
摘要

Abstract The emotional state of people plays a key role in physiological and behavioral human interaction. Emotional state analysis entails many fields such as neuroscience, cognitive sciences, and biomedical engineering because the parameters of interest contain the complex neuronal activities of the brain. Electroencephalogram (EEG) signals are processed to communicate brain signals with external systems and make predictions over emotional states. This paper proposes a novel method for emotion recognition based on deep convolutional neural networks (CNNs) that are used to classify Valence, Arousal, Dominance, and Liking emotional states. Hence, a novel approach is proposed for emotion recognition with time series of multi-channel EEG signals from a Database for Emotion Analysis and Using Physiological Signals (DEAP). We propose a new approach to emotional state estimation utilizing CNN-based classification of multi-spectral topology images obtained from EEG signals. In contrast to most of the EEG-based approaches that eliminate spatial information of EEG signals, converting EEG signals into a sequence of multi-spectral topology images, temporal, spectral, and spatial information of EEG signals are preserved. The deep recurrent convolutional network is trained to learn important representations from a sequence of three-channel topographical images. We have achieved test accuracy of 90.62% for negative and positive Valence, 86.13% for high and low Arousal, 88.48% for high and low Dominance, and finally 86.23% for like–unlike. The evaluations of this method on emotion recognition problem revealed significant improvements in the classification accuracy when compared with other studies using deep neural networks (DNNs) and one-dimensional CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
懒惰扼杀激情完成签到 ,获得积分10
3秒前
酥酥完成签到,获得积分10
5秒前
希望天下0贩的0应助xwydx采纳,获得10
5秒前
momo发布了新的文献求助10
7秒前
酥酥发布了新的文献求助10
8秒前
17秒前
希望天下0贩的0应助sangsang采纳,获得30
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
Jasper应助科研通管家采纳,获得10
24秒前
25秒前
pzc发布了新的文献求助10
31秒前
33秒前
Spark完成签到,获得积分10
37秒前
39秒前
想听水星记完成签到,获得积分10
41秒前
神奇红桃三完成签到,获得积分10
41秒前
42秒前
45秒前
无花果应助爱笑的寻真采纳,获得10
47秒前
略略略完成签到,获得积分10
47秒前
潦草小狗完成签到,获得积分10
47秒前
52秒前
迷路的沛芹完成签到 ,获得积分10
57秒前
LeoJun完成签到,获得积分10
57秒前
57秒前
爱笑的寻真完成签到,获得积分10
58秒前
xwxhbydmet发布了新的文献求助10
1分钟前
Lucas应助烂漫大地采纳,获得10
1分钟前
潦草小狗发布了新的文献求助10
1分钟前
Meyako完成签到 ,获得积分0
1分钟前
qiii完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Xavier发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476235
求助须知:如何正确求助?哪些是违规求助? 4577925
关于积分的说明 14363195
捐赠科研通 4505804
什么是DOI,文献DOI怎么找? 2468878
邀请新用户注册赠送积分活动 1456491
关于科研通互助平台的介绍 1430126