过电位
催化作用
法拉第效率
材料科学
可逆氢电极
电化学
选择性
镍
氮气
电解
碳纤维
无机化学
密度泛函理论
化学工程
二氧化碳电化学还原
氧化还原
纳米技术
电极
工作电极
物理化学
化学
一氧化碳
有机化学
冶金
计算化学
复合材料
工程类
复合数
电解质
作者
Rahman Daiyan,Xiaofeng Zhu,Zizheng Tong,Lele Gong,Amir Razmjou,Ru‐Shi Liu,Zhenhai Xia,Xunyu Lu,Liming Dai,Rose Amal
出处
期刊:Nano Energy
[Elsevier BV]
日期:2020-07-28
卷期号:78: 105213-105213
被引量:77
标识
DOI:10.1016/j.nanoen.2020.105213
摘要
Nitrogen-coordinated single-atom catalysts (SACs) catalyzed electrochemical reduction of CO2 (CO2RR) to CO has emerged as a promising strategy in the management of the global carbon cycle. Herein, we carried out density functional theory (DFT) calculations to investigate the role of possible Ni-Nx and Ni–C4 coordinations in CO2RR catalysis. We discover that the free energy change for CO2RR is lowered with a decrease in Ni-Nx coordination number, with Ni–C4 displaying the lowest overpotential for CO2RR. Using these findings, we develop an effective strategy to transform Ni–N4 to Ni–C4 active sites by removing N moieties within Ni embedded in a hollow nitrogen-doped carbon shell ([email protected]). We demonstrate an improvement in CO selectivity with this transformation of active sites and the optimized [email protected] catalyst is capable of converting CO2 to CO with high Faradaic efficiency for CO (FECO) of 96% and a current density (j) of −35 mA cm−2 at an applied potential of −1 V vs Reversible Hydrogen Electrode (RHE). When adopted in a high-throughput gas diffusion electrolyzer, the newly-developed superhydrophobic catalyst is capable of maintaining CO selectivity >95% over a wide range of applied cell voltages from 2.4 V to 3 V with high current densities (~100 mA cm−2 at 3 V). Our insights and findings with active site transformation in Ni–N–C SACs can serve as guidelines for designing highly active SACs for large-scale CO2RR systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI