MRI‐based radiomics nomogram for the preoperative prediction of deep myometrial invasion of FIGO stage I endometrial carcinoma

列线图 医学 阶段(地层学) 接收机工作特性 磁共振成像 放射科 曼惠特尼U检验 无线电技术 逻辑回归 组内相关 阿卡克信息准则 核医学 肿瘤科 内科学 机器学习 计算机科学 生物 临床心理学 古生物学 心理测量学
作者
Mingli Zhao,Feng Wen,Jiaxin Shi,Jing Song,Jiaqi Zhao,Qingling Song,Qingyuan Lai,Yahong Luo,Tao Yu,Xiran Jiang,Wenyan Jiang,Yue Dong
出处
期刊:Medical Physics [Wiley]
卷期号:49 (10): 6505-6516 被引量:18
标识
DOI:10.1002/mp.15835
摘要

Endometrial carcinoma (EC) is one of the most common gynecological malignancies with an increasing incidence, and an accurate preoperative diagnosis of deep myometrial invasion (DMI) is crucial for personalized treatment.To determine the predictive value of a magnetic resonance imaging (MRI)-based radiomics nomogram for the presence of DMI in the International Federation of Gynecology and Obstetrics (FIGO) stage I EC.We retrospectively collected 163 patients with pathologically confirmed stage I EC from two centers and divided all samples into a training group (Center 1) and a validation group (Center 2). Clinical and routine imaging indicators were analyzed by logistical regression to construct a conventional diagnostic model (M1). Radiomics features extracted from the axial T2-weighted and axial contrast-enhanced T1-weighted (CE-T1W) images were treated with the intraclass correlation coefficient, Mann-Whitney U test, least absolute shrinkage and selection operator, and logistic regression analysis with Akaike information criterion to build a combined radiomics signature (M2). A nomogram (M3) was constructed by M1 and M2. Calibration and decision curves were drawn to evaluate the nomogram in the training and validation cohorts. The diagnostic performance of each indicator and model was evaluated by the area under the receiver operating characteristic curve (AUC).The four most significant radiomics features were finally selected from the CE-T1W MRI. For the diagnosis of DMI, the AUCT /AUCV of M1 was 0.798/0.738, the AUCT /AUCV of M2 was 0.880/0.852, and the AUCT /AUCV of M3 was 0.936/0.871 in the training and validation groups, respectively. The calibration curves showed that M3 was in good agreement with the ideal values. The decision curve analysis suggested potential clinical application values of the nomogram.A nomogram based on MRI radiomics and clinical imaging indicators can improve the diagnosis of DMI in patients with FIGO stage I EC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Kiosta应助银色的天采纳,获得10
1秒前
amengptsd发布了新的文献求助10
1秒前
orixero应助闪闪采纳,获得10
2秒前
suibianba应助旺旺采纳,获得10
2秒前
0720jy完成签到,获得积分10
2秒前
3秒前
3秒前
bkagyin应助欧耶采纳,获得10
3秒前
LeoChris发布了新的文献求助10
5秒前
乔123发布了新的文献求助10
7秒前
小泓完成签到,获得积分10
7秒前
7秒前
wxy发布了新的文献求助10
7秒前
gy发布了新的文献求助10
7秒前
amengptsd发布了新的文献求助10
8秒前
8秒前
美好雁荷完成签到,获得积分10
8秒前
9秒前
9秒前
田晟源完成签到,获得积分10
9秒前
9秒前
充电宝应助圆彰七大采纳,获得10
10秒前
松子儿hhh完成签到,获得积分10
10秒前
10秒前
可爱的函函应助勤劳妙彤采纳,获得10
10秒前
11秒前
外侧人发布了新的文献求助10
11秒前
lxlcx应助suodeheng采纳,获得28
12秒前
风中静枫发布了新的文献求助10
12秒前
12秒前
大个应助drdouxia采纳,获得10
12秒前
魔幻的雁风完成签到,获得积分10
13秒前
852应助田晟源采纳,获得10
13秒前
欧耶发布了新的文献求助10
13秒前
追寻皮卡丘完成签到,获得积分10
13秒前
14秒前
14秒前
橘子发布了新的文献求助10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842096
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533721
捐赠科研通 3104627
什么是DOI,文献DOI怎么找? 1709760
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773993