Unsupervised deep learning method for bridge condition assessment based on intra-and inter-class probabilistic correlations of quasi-static responses

概率逻辑 一致性(知识库) 计算机科学 基本事实 力矩(物理) 概率密度函数 数学 人工智能 统计 物理 经典力学
作者
Yang Xu,Yadi Tian,Hui Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (1): 600-620 被引量:20
标识
DOI:10.1177/14759217221103016
摘要

Data-driven methods for structural condition assessment have been extensively investigated using deep learning (DL). However, studies on quasi-static response data-based structural health diagnoses are relatively insufficient. The difficulty is that quasi-static response data contain coupled effects of structural parameters and external loads. Considering that the correlation between quasi-static responses subjected to identical external loads is only a function of structural parameters and independent from the external loads, the correlation can therefore be employed as an indicator of the structural condition. This study proposes a condition assessment approach for cable-stayed bridges based on correlation modeling between the deflection of girders and tension in cables. The correlation is modeled by an unsupervised DL network comprising two variational autoencoders (AE) and two generative adversarial networks (GANs). The input and output are marginal probability density functions (PDFs). The DL network is trained as the reconstruction and translation processes to model the intra-class and inter-class correlations. Assumptions of shared latent space and cycle consistency are taken to ensure mutual modeling capacity. The Wasserstein distance between the predicted and ground-truth PDFs of tension in cables is used as an indicator of the structural condition. Using probabilistic correlation of quasi-static responses only requires the PDF of external loads to be identical and does not need the external loads to be precisely identical at any moment, thus relieving time-synchronization restrictions for different sensors. The results show that the predicted PDFs agree well with the ground-truth values under normal conditions. Furthermore, the Wasserstein distance is sensitive to damage and shows noticeable variations when the damage of the stay cable occurs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
111完成签到,获得积分10
刚刚
刚刚
畅快的念烟完成签到,获得积分10
1秒前
小周发布了新的文献求助10
1秒前
姜惠完成签到,获得积分10
1秒前
SYLH应助heli采纳,获得10
1秒前
邢女士完成签到,获得积分10
1秒前
火星上的凝竹完成签到,获得积分10
2秒前
思念是什么味道完成签到,获得积分10
2秒前
汪汪完成签到,获得积分10
2秒前
洒脱一生发布了新的文献求助10
2秒前
kk完成签到,获得积分10
3秒前
刚得力完成签到,获得积分10
3秒前
雨淋沐风完成签到,获得积分10
3秒前
4秒前
4秒前
饱满友易完成签到,获得积分10
4秒前
科研通AI5应助麦凯采纳,获得10
5秒前
Agnesma发布了新的文献求助10
5秒前
6秒前
kk发布了新的文献求助10
6秒前
66完成签到 ,获得积分10
6秒前
111完成签到 ,获得积分10
6秒前
happyou完成签到,获得积分10
6秒前
彩色半烟完成签到,获得积分10
7秒前
Everything发布了新的文献求助10
7秒前
7秒前
OOK发布了新的文献求助10
7秒前
are完成签到,获得积分10
7秒前
我想打喷嚏完成签到,获得积分10
7秒前
瀚泛完成签到,获得积分10
8秒前
共享精神应助尛瞐慶成采纳,获得10
9秒前
ybr完成签到,获得积分20
10秒前
happyou发布了新的文献求助10
10秒前
饱满友易发布了新的文献求助10
11秒前
无机盐完成签到,获得积分10
12秒前
manny发布了新的文献求助10
12秒前
老迟到的翠容完成签到,获得积分10
12秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
A Student's Guide to Maxwell's Equations 200
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827474
求助须知:如何正确求助?哪些是违规求助? 3369741
关于积分的说明 10457440
捐赠科研通 3089439
什么是DOI,文献DOI怎么找? 1699861
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263