Signal-Transformer: A Robust and Interpretable Method for Rotating Machinery Intelligent Fault Diagnosis Under Variable Operating Conditions

可解释性 人工智能 特征提取 变压器 可视化 状态监测 模式识别(心理学) 分割 计算机科学 深度学习 工程类 嵌入 机器学习 电气工程 电压
作者
Jian Tang,Guanhui Zheng,Chao Wei,Wenbin Huang,Xiaoxi Ding
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:47
标识
DOI:10.1109/tim.2022.3169528
摘要

As well-known, deep learning models have achieved great success in the field of intelligent fault diagnosis. However, once the working condition changed, the diagnostic accuracy of the trained models would be greatly affected, which seriously limits the application of deep learning models in real industry. Therefore, signal-transformer (S-Transformer), an intelligent fault diagnosis model focusing on the problem of variable operating conditions, is proposed in this study. First, signal embedding is employed to complete the segmentation and up-dimensional representation of the 1-D signal, thus enriching the information in a high dimensional space. Then, those embedded subsignals are further processed via the multihead self-attention mechanism to explore the state features of the signal in different spaces for a deep representation. Finally, an attention visualization method is proposed for vibrating signals to increase the interpretability of the proposed model and overcome the drawbacks of black boxes. With an experimental validation, the proposed model outperforms than other six deep learning methods in terms of diagnostic accuracy under unknown operating conditions. According to the principle of the model, the crucial weights for signal are further explained in visualization. Furthermore, it can be foreseen that the S-Transformer can achieve a robust recognition effect with the ability of interpretable feature extraction in signal denoising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keke完成签到,获得积分10
刚刚
Akim应助体贴海白采纳,获得60
1秒前
小马甲应助banana10采纳,获得10
1秒前
2秒前
3秒前
nuomi发布了新的文献求助30
3秒前
烟花应助ww采纳,获得10
4秒前
6秒前
9秒前
微笑傥发布了新的文献求助10
11秒前
12秒前
JamesPei应助栗栗栗知采纳,获得10
12秒前
张小祎发布了新的文献求助10
13秒前
14秒前
ww发布了新的文献求助10
16秒前
16秒前
16秒前
vampire完成签到 ,获得积分10
16秒前
wp4455777完成签到,获得积分10
16秒前
18秒前
SCIBUDDY完成签到,获得积分10
19秒前
wp4455777发布了新的文献求助10
20秒前
SIDEsss发布了新的文献求助30
20秒前
21秒前
21秒前
BAEKHYUNLUCKY发布了新的文献求助10
22秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
yxr0315发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
27秒前
深情安青应助jamin911采纳,获得10
27秒前
29秒前
微笑傥完成签到,获得积分10
29秒前
研友_happy发布了新的文献求助10
29秒前
liuchzzyy发布了新的文献求助10
29秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Further Studies on the Gold-Catalyzed Oxidative Domino Cyclization/Cycloaddition to Give Polyfunctional Tetracycles 400
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4300007
求助须知:如何正确求助?哪些是违规求助? 3824848
关于积分的说明 11974899
捐赠科研通 3466218
什么是DOI,文献DOI怎么找? 1901148
邀请新用户注册赠送积分活动 948948
科研通“疑难数据库(出版商)”最低求助积分说明 851066