Beyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification

感受野 点云 计算机科学 人工智能 模式识别(心理学) 分层(种子) 图形 计算机视觉 卷积(计算机科学) 领域(数学) 遥感 人工神经网络 数学 地理 理论计算机科学 种子休眠 植物 发芽 休眠 纯数学 生物
作者
Yiqi Mao,Kaiqiang Chen,Wenhui Diao,Xian Sun,Xiaonan Lü,Kun Fu,Martin Weinmann
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:188: 45-61 被引量:25
标识
DOI:10.1016/j.isprsjprs.2022.03.019
摘要

The classification of airborne laser scanning (ALS) point clouds is a critical task of remote sensing and photogrammetry fields. Although recent deep learning-based methods have achieved satisfactory performance, they have ignored the unicity of the receptive field, which makes the ALS point cloud classification remain challenging for the distinguishment of the areas with complex structures and extreme scale variations. In this article, for the objective of configuring multi-receptive field features, we propose a novel receptive field fusion-and-stratification network (RFFS-Net). With a novel dilated graph convolution (DGConv) and its extension annular dilated convolution (ADConv) as basic building blocks, the receptive field fusion process is implemented with the dilated and annular graph fusion (DAGFusion) module, which obtains multi-receptive field feature representation through capturing dilated and annular graphs with various receptive regions. The stratification of the receptive fields with point sets of different resolutions as the calculation bases is performed with Multi-level Decoders nested in RFFS-Net and driven by the multi-level receptive field aggregation loss (MRFALoss) to drive the network to learn in the direction of the supervision labels with different resolutions. With receptive field fusion-and-stratification, RFFS-Net is more adaptable to the classification of regions with complex structures and extreme scale variations in large-scale ALS point clouds. Evaluated on the ISPRS Vaihingen 3D dataset, our RFFS-Net significantly outperforms the baseline (i.e. PointConv) approach by 5.3% on mF1 and 5.4% on mIoU, accomplishing an overall accuracy of 82.1%, an mF1 of 71.6%, and an mIoU of 58.2%. The experiments show that our RFFS-Net achieves a new state-of-the-art classification performance on powerline, car, and fence classes. Furthermore, experiments on the LASDU dataset and the 2019 IEEE-GRSS Data Fusion Contest dataset show that RFFS-Net achieves a new state-of-the-art classification performance. The code is available at github.com/WingkeungM/RFFS-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助顺顺采纳,获得10
11秒前
小李完成签到 ,获得积分10
28秒前
laohu完成签到,获得积分10
30秒前
31秒前
lopper应助Bgeelyu采纳,获得10
34秒前
威武画板完成签到 ,获得积分10
36秒前
研友_Z30GJ8完成签到,获得积分0
38秒前
Ava应助滕皓轩采纳,获得10
39秒前
wwj1009完成签到 ,获得积分10
42秒前
42秒前
欣慰冬亦完成签到 ,获得积分10
43秒前
apckkk完成签到 ,获得积分10
44秒前
芝诺的乌龟完成签到 ,获得积分0
52秒前
53秒前
mymEN完成签到 ,获得积分10
55秒前
温馨完成签到 ,获得积分10
55秒前
lili完成签到 ,获得积分10
59秒前
研友Bn完成签到 ,获得积分10
1分钟前
leo完成签到,获得积分10
1分钟前
淡然觅荷完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
一早完成签到 ,获得积分10
1分钟前
lanlan完成签到,获得积分10
1分钟前
1分钟前
1分钟前
俊逸的盛男完成签到 ,获得积分10
2分钟前
2分钟前
Microgan完成签到,获得积分10
2分钟前
桂花完成签到 ,获得积分10
2分钟前
wuqi完成签到 ,获得积分10
2分钟前
2分钟前
Mark完成签到 ,获得积分10
2分钟前
你要学好完成签到 ,获得积分10
2分钟前
充电宝应助linmo采纳,获得10
2分钟前
devil_lei完成签到,获得积分10
2分钟前
susan完成签到 ,获得积分10
2分钟前
Vicktor2021完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318430
捐赠科研通 3060628
什么是DOI,文献DOI怎么找? 1679732
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353