A novel apple fruit detection and counting methodology based on deep learning and trunk tracking in modern orchard

果园 人工智能 计算机视觉 跟踪(教育) 帧(网络) 计算机科学 相关系数 后备箱 判别式 职位(财务) 数学 园艺 植物 机器学习 经济 财务 生物 电信 教育学 心理学
作者
Fangfang Gao,Wentai Fang,Xiaoming Sun,Zhenchao Wu,Guanao Zhao,Li Guo,Rui Li,Longsheng Fu,Qin Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:197: 107000-107000 被引量:91
标识
DOI:10.1016/j.compag.2022.107000
摘要

Accurate count of fruits is important for producers to make adequate decisions in production management. Although some algorithms based on machine vision have been developed to count fruits which were all implemented by tracking fruits themselves, those algorithms often make mismatches or even lose targets during the tracking process due to the large number of highly similar fruits in appearance. This study aims to develop an automated video processing method for improving the counting accuracy of apple fruits in orchard environment with modern vertical fruiting-wall architecture. As the trunk is normally larger than fruits and appears clearly in the video, the trunk is thus selected as a single-object tracking target to reach a higher accuracy and higher speed tracking than the commonly used method of fruit-based multi-object tracking. This method was trained using a YOLOv4-tiny network integrated with a CSR-DCF (channel spatial reliability-discriminative correlation filter) algorithm. Reference displacement between consecutive frames was calculated according to the frame motion trajectory for predicting possible fruit locations in terms of previously detected positions. The minimum Euclidean distance of detected fruit position and the predicted fruit position was calculated to match the same fruits between consecutive video frames. Finally, a unique ID was assigned to each fruit for counting. Results showed that mean average precision of 99.35% for fruit and trunk detection was achieved in this study, which could provide a good basis for fruit accurate counting. A counting accuracy of 91.49% and a correlation coefficient R2 of 0.9875 with counting performed by manual counting were reached in orchard videos. Besides, proposed counting method can be implemented on CPU at 2 ∼ 5 frames per second (fps). These promising results demonstrate the potential of this method to provide yield data for apple fruits or even other types of fruits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷雾围城完成签到 ,获得积分10
2秒前
4秒前
箱子完成签到,获得积分10
5秒前
归尘发布了新的文献求助10
9秒前
何1发布了新的文献求助10
10秒前
cai应助生尽证提采纳,获得10
12秒前
星辰大海应助CY采纳,获得10
14秒前
ranranran完成签到,获得积分10
14秒前
健康幸福平安完成签到,获得积分10
21秒前
无花果应助何1采纳,获得10
23秒前
科研通AI5应助光亮向雁采纳,获得10
28秒前
猪皮恶人完成签到,获得积分10
29秒前
所所应助知足的憨人*-*采纳,获得10
31秒前
chuckle完成签到,获得积分10
31秒前
33秒前
37秒前
xcltzh1296完成签到,获得积分10
37秒前
猪皮恶人发布了新的文献求助10
42秒前
wuming完成签到,获得积分10
43秒前
潇洒小松鼠完成签到,获得积分10
46秒前
Ayo完成签到,获得积分20
49秒前
aaaaa完成签到,获得积分10
51秒前
HEAUBOOK应助chunzau采纳,获得10
55秒前
57秒前
必发Nature完成签到,获得积分10
57秒前
土豆淀粉完成签到 ,获得积分10
1分钟前
AaronDon给AaronDon的求助进行了留言
1分钟前
1分钟前
jenningseastera应助满意项链采纳,获得10
1分钟前
陶世立完成签到 ,获得积分10
1分钟前
1分钟前
万能图书馆应助青栞采纳,获得10
1分钟前
光亮向雁发布了新的文献求助10
1分钟前
文静完成签到,获得积分10
1分钟前
小宋应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得30
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323580
关于积分的说明 10215083
捐赠科研通 3038764
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315