Energy-Efficient Computation Offloading With DVFS Using Deep Reinforcement Learning for Time-Critical IoT Applications in Edge Computing

计算机科学 频率标度 服务器 能源消耗 计算卸载 云计算 边缘计算 强化学习 分布式计算 边缘设备 高效能源利用 计算机网络 人工智能 操作系统 电气工程 工程类 生物 生态学
作者
Saroj Kumar Panda,Man Lin,Ti Zhou
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (8): 6611-6621 被引量:28
标识
DOI:10.1109/jiot.2022.3153399
摘要

Internet of Things (IoT) is a technology that allows ordinary physical devices to collect, process, and share data with other physical devices and systems over the Internet. It provides pervasively connected infrastructures to support innovative applications and services that can automate otherwise intensely laborious manual effort. Edge computing (EC) complements the powerful centralized cloud servers by providing powerful computation capability close to the data source, minimizing communication latency, and securing data privacy. The energy consumption problem has continued to receive much attention from the IoT community in applying various techniques to reduce energy consumption while still meeting the computational demand. In this article, we propose an application-deadline-aware data offloading scheme using deep reinforcement learning and dynamic voltage and frequency scaling (DVFS) in an EC environment to reduce the energy consumption of IoT devices. The proposed scheme learns the optimal data distribution policies and local computation DVFS frequency scaling by interacting with the system environment and learning the behavior of the device, network, and edge servers. The proposed scheme was tested on multiple EC environments with different IoT devices. Experimental results show that this scheme can reduce energy consumption while achieving the IoT application and services timing and computational goals. The proposed scheme has substantial energy savings when compared with the native Linux governors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊不麻烦发布了新的文献求助10
刚刚
刚刚
科研通AI5应助牛阳雨采纳,获得10
刚刚
张小南完成签到,获得积分10
刚刚
1秒前
青柑枸杞完成签到,获得积分10
1秒前
研友_VZG7GZ应助xh采纳,获得10
2秒前
2秒前
aabbccwy完成签到,获得积分10
2秒前
unfeeling8完成签到 ,获得积分10
2秒前
阿橘完成签到,获得积分10
2秒前
猫里小七完成签到,获得积分10
3秒前
乐乐应助梅仑西西采纳,获得10
4秒前
4秒前
4秒前
5秒前
狄谷南完成签到,获得积分10
5秒前
无花果应助可乐采纳,获得20
6秒前
6秒前
抹茶麻薯发布了新的文献求助10
7秒前
7秒前
非烟完成签到,获得积分20
7秒前
enh发布了新的文献求助30
8秒前
8秒前
9秒前
9秒前
充电宝应助1111采纳,获得10
9秒前
kiska发布了新的文献求助20
9秒前
CNAxiaozhu7举报long求助涉嫌违规
9秒前
黄腾应助云汐儿采纳,获得10
10秒前
10秒前
zzz发布了新的文献求助10
11秒前
脑洞疼应助小明采纳,获得10
11秒前
xiaoshuwang完成签到,获得积分10
11秒前
11秒前
和谐续完成签到 ,获得积分10
11秒前
12秒前
zl12345发布了新的文献求助10
12秒前
13秒前
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808831
求助须知:如何正确求助?哪些是违规求助? 3353506
关于积分的说明 10365583
捐赠科研通 3069749
什么是DOI,文献DOI怎么找? 1685746
邀请新用户注册赠送积分活动 810704
科研通“疑难数据库(出版商)”最低求助积分说明 766300