An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical Features

模式识别(心理学) 卷积神经网络 分类器(UML) 特征提取 最小边界框 跳跃式监视 探测器 特征(语言学) 人工神经网络 目标检测 集合(抽象数据类型) 卷积(计算机科学) 计算机科学 计算机视觉 人工智能 图像(数学) 电信 哲学 语言学 程序设计语言
作者
Yu He,Kechen Song,Qinggang Meng,Yunhui Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (4): 1493-1504 被引量:1101
标识
DOI:10.1109/tim.2019.2915404
摘要

A complete defect detection task aims to achieve the specific class and precise location of each defect in an image, which makes it still challenging for applying this task in practice. The defect detection is a composite task of classification and location, leading to related methods is often hard to take into account the accuracy of both. The implementation of defect detection depends on a special detection data set that contains expensive manual annotations. In this paper, we proposed a novel defect detection system based on deep learning and focused on a practical industrial application: steel plate defect inspection. In order to achieve strong classification ability, this system employs a baseline convolution neural network (CNN) to generate feature maps at each stage, and then the proposed multilevel feature fusion network (MFN) combines multiple hierarchical features into one feature, which can include more location details of defects. Based on these multilevel features, a region proposal network (RPN) is adopted to generate regions of interest (ROIs). For each ROI, a detector, consisting of a classifier and a bounding box regressor, produces the final detection results. Finally, we set up a defect detection data set NEU-DET for training and evaluating our method. On the NEU-DET, our method achieves 74.8/82.3 mAP with baseline networks ResNet34/50 by using 300 proposals. In addition, by using only 50 proposals, our method can detect at 20 ft/s on a single GPU and reach 92% of the above performance, hence the potential for real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Garland发布了新的文献求助10
1秒前
汉堡包应助张张采纳,获得10
1秒前
1秒前
abby关注了科研通微信公众号
2秒前
zhaoyuwei发布了新的文献求助10
2秒前
Fushanyu完成签到 ,获得积分10
3秒前
糯米团的完成签到 ,获得积分10
3秒前
3秒前
12281w发布了新的文献求助10
3秒前
朝思暮想发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
荷包蛋完成签到,获得积分10
4秒前
5秒前
asqw发布了新的文献求助10
5秒前
fmjyoolw完成签到,获得积分10
5秒前
5秒前
蓝豆子发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
舒迟完成签到,获得积分10
6秒前
zy发布了新的文献求助10
6秒前
陈琳发布了新的文献求助10
7秒前
7秒前
赘婿应助杪商末采纳,获得10
7秒前
煜琪发布了新的文献求助10
8秒前
wy发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
内向尔安发布了新的文献求助10
9秒前
怡然的怜烟应助srt采纳,获得30
9秒前
xiyang发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430202
求助须知:如何正确求助?哪些是违规求助? 4543438
关于积分的说明 14187210
捐赠科研通 4461576
什么是DOI,文献DOI怎么找? 2446244
邀请新用户注册赠送积分活动 1437490
关于科研通互助平台的介绍 1414381