An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical Features

模式识别(心理学) 卷积神经网络 分类器(UML) 特征提取 最小边界框 跳跃式监视 探测器 特征(语言学) 人工神经网络 目标检测 集合(抽象数据类型) 卷积(计算机科学) 计算机科学 计算机视觉 人工智能 图像(数学) 电信 哲学 语言学 程序设计语言
作者
Yu He,Kechen Song,Qinggang Meng,Yunhui Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (4): 1493-1504 被引量:860
标识
DOI:10.1109/tim.2019.2915404
摘要

A complete defect detection task aims to achieve the specific class and precise location of each defect in an image, which makes it still challenging for applying this task in practice. The defect detection is a composite task of classification and location, leading to related methods is often hard to take into account the accuracy of both. The implementation of defect detection depends on a special detection data set that contains expensive manual annotations. In this paper, we proposed a novel defect detection system based on deep learning and focused on a practical industrial application: steel plate defect inspection. In order to achieve strong classification ability, this system employs a baseline convolution neural network (CNN) to generate feature maps at each stage, and then the proposed multilevel feature fusion network (MFN) combines multiple hierarchical features into one feature, which can include more location details of defects. Based on these multilevel features, a region proposal network (RPN) is adopted to generate regions of interest (ROIs). For each ROI, a detector, consisting of a classifier and a bounding box regressor, produces the final detection results. Finally, we set up a defect detection data set NEU-DET for training and evaluating our method. On the NEU-DET, our method achieves 74.8/82.3 mAP with baseline networks ResNet34/50 by using 300 proposals. In addition, by using only 50 proposals, our method can detect at 20 ft/s on a single GPU and reach 92% of the above performance, hence the potential for real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助热心纸鹤采纳,获得10
刚刚
酷波er应助苹果烧鹅采纳,获得10
刚刚
ding应助黑猫小苍采纳,获得10
1秒前
冷静机器猫完成签到,获得积分10
1秒前
Hello应助浙江嘉兴采纳,获得10
1秒前
飘逸雨珍发布了新的文献求助10
1秒前
内向宛凝发布了新的文献求助10
1秒前
追光者完成签到,获得积分10
2秒前
linelolo完成签到,获得积分10
2秒前
3秒前
野草完成签到,获得积分10
4秒前
WW发布了新的文献求助10
4秒前
mmgf发布了新的文献求助10
4秒前
ECUST完成签到 ,获得积分10
4秒前
无人深空发布了新的文献求助10
5秒前
淡定完成签到,获得积分20
5秒前
6秒前
HP完成签到,获得积分10
6秒前
追光者发布了新的文献求助20
7秒前
SYLH应助傅双庆采纳,获得10
7秒前
研友_8yX0xZ发布了新的文献求助10
7秒前
迷人芒果完成签到 ,获得积分10
7秒前
科目三应助潞垚采纳,获得10
8秒前
9秒前
开朗的觅柔完成签到,获得积分10
9秒前
林夕发布了新的文献求助20
10秒前
飘逸雨珍完成签到,获得积分20
10秒前
莫休发布了新的文献求助10
11秒前
11关注了科研通微信公众号
12秒前
cmy完成签到,获得积分10
12秒前
科研通AI5应助典雅的谷雪采纳,获得10
12秒前
Lily0126发布了新的文献求助10
13秒前
端庄的火龙果完成签到,获得积分10
13秒前
哈哈哈完成签到,获得积分10
13秒前
15秒前
丘比特应助乐正乘风采纳,获得10
15秒前
今后应助kendall采纳,获得10
16秒前
lizhiqian2024发布了新的文献求助10
16秒前
ding应助yakov采纳,获得10
18秒前
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808849
求助须知:如何正确求助?哪些是违规求助? 3353530
关于积分的说明 10365783
捐赠科研通 3069785
什么是DOI,文献DOI怎么找? 1685776
邀请新用户注册赠送积分活动 810723
科研通“疑难数据库(出版商)”最低求助积分说明 766304