Radiomics features on non-contrast-enhanced CT scan can precisely classify AVM-related hematomas from other spontaneous intraparenchymal hematoma types

医学 无线电技术 放射科 特征(语言学) 血肿 神经组阅片室 特征选择 人工智能 模式识别(心理学) 计算机科学 神经学 语言学 精神科 哲学
作者
Yupeng Zhang,Baorui Zhang,Fei Liang,Shikai Liang,Yuxiang Zhang,Peng Yan,Chao Ma,Aihua Liu,Feng Guo,Chuhan Jiang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:29 (4): 2157-2165 被引量:59
标识
DOI:10.1007/s00330-018-5747-x
摘要

To investigate the classification ability of quantitative radiomics features extracted on non-contrast-enhanced CT (NECT) image for discrimination of AVM-related hematomas from those caused by other etiologies. Two hundred sixty-one cases with intraparenchymal hematomas underwent baseline CT scan between 2012 and 2017 in our center. Cases were split into a training dataset (n = 180) and a test dataset (n = 81). Hematoma types were dichotomized into two classes, namely, AVM-related hematomas (AVM-H) and hematomas caused by other etiologies. A total of 576 radiomics features of 6 feature groups were extracted from NECT. We applied 11 feature selection methods to select informative features from each feature group. Selected radiomics features and the clinical feature age were then used to fit machine learning classifiers. In combination of the 11 feature selection methods and 8 classifiers, we constructed 88 predictive models. Predictive models were evaluated and the optimal one was selected and evaluated. The selected radiomics model was RELF_Ada, which was trained with Adaboost classifier and features selected by Relief method. Cross-validated area under the curve (AUC) on training dataset was 0.988 and the relative standard deviation (RSD%) was 0.062. AUC on the test dataset was 0.957. Accuracy (ACC), sensitivity, specificity, positive prediction value (PPV), and negative predictive value (NPV) were 0.926, 0.889, 0.937, 0.800, and 0.967, respectively. Machine learning models with radiomics features extracted from NECT scan accurately discriminated AVM-related intraparenchymal hematomas from those caused by other etiologies. This technique provided a fast, non-invasive approach without use of contrast to diagnose this disease. • Radiomics features from non-contrast-enhanced CT accurately discriminated AVM-related hematomas from those caused by other etiologies. • AVM-related hematomas tended to be larger in diameter, coarser in texture, and more heterogeneous in composition. • Adaboost classifier is an efficient approach for analyzing radiomics features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啥时候能否CNS完成签到,获得积分20
4秒前
6秒前
7秒前
钟基基完成签到 ,获得积分10
8秒前
10秒前
lzzk完成签到,获得积分10
10秒前
15秒前
INITIAL完成签到,获得积分10
16秒前
杨好圆完成签到,获得积分10
18秒前
18秒前
19秒前
Monica发布了新的文献求助10
23秒前
不吃香菜发布了新的文献求助10
25秒前
gzslwddhjx完成签到,获得积分10
25秒前
玄音完成签到,获得积分10
26秒前
彭于晏应助科研通管家采纳,获得10
30秒前
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
如履薄冰应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
ym完成签到,获得积分10
30秒前
风中小刺猬完成签到,获得积分10
31秒前
[刘小婷]完成签到,获得积分10
32秒前
雪上一枝蒿完成签到,获得积分10
33秒前
852应助贾舒涵采纳,获得30
34秒前
搜集达人应助高大的定帮采纳,获得10
35秒前
ZCL完成签到,获得积分10
38秒前
39秒前
我是老大应助WW采纳,获得10
40秒前
安静的幻灵完成签到,获得积分10
40秒前
byyyy完成签到,获得积分10
42秒前
ZCL发布了新的文献求助10
43秒前
Orange应助yuxiang采纳,获得10
48秒前
机灵柚子应助高贵灭男采纳,获得20
48秒前
秦晶晶完成签到 ,获得积分10
49秒前
51秒前
xq完成签到,获得积分10
54秒前
搞怪的汉堡完成签到 ,获得积分10
55秒前
57秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823579
求助须知:如何正确求助?哪些是违规求助? 3365933
关于积分的说明 10438373
捐赠科研通 3085105
什么是DOI,文献DOI怎么找? 1697154
邀请新用户注册赠送积分活动 816235
科研通“疑难数据库(出版商)”最低求助积分说明 769462