Prediction of treatment response in rheumatoid arthritis patients using genome‐wide SNP data

遗传建筑学 样本量测定 SNP公司 全基因组关联研究 类风湿性关节炎 超参数 特质 遗传关联 统计 医学 计算机科学 单核苷酸多态性 数量性状位点 生物 机器学习 内科学 数学 遗传学 基因型 基因 程序设计语言 环境卫生 人口
作者
Svetlana Cherlin,Darren Plant,John B. Taylor,Marco Colombo,Athina Spiliopoulou,Evan Tzanis,Ann W. Morgan,Michael R. Barnes,Helen M. Colhoun,Jennifer H. Barrett,Costantino Pitzalis,Richard B. Warren,Heather J. Cordell
出处
期刊:Genetic Epidemiology [Wiley]
卷期号:42 (8): 754-771 被引量:13
标识
DOI:10.1002/gepi.22159
摘要

Although a number of treatments are available for rheumatoid arthritis (RA), each of them shows a significant nonresponse rate in patients. Therefore, predicting a priori the likelihood of treatment response would be of great patient benefit. Here, we conducted a comparison of a variety of statistical methods for predicting three measures of treatment response, between baseline and 3 or 6 months, using genome-wide SNP data from RA patients available from the MAximising Therapeutic Utility in Rheumatoid Arthritis (MATURA) consortium. Two different treatments and 11 different statistical methods were evaluated. We used 10-fold cross validation to assess predictive performance, with nested 10-fold cross validation used to tune the model hyperparameters when required. Overall, we found that SNPs added very little prediction information to that obtained using clinical characteristics only, such as baseline trait value. This observation can be explained by the lack of strong genetic effects and the relatively small sample sizes available; in analysis of simulated and real data, with larger effects and/or larger sample sizes, prediction performance was much improved. Overall, methods that were consistent with the genetic architecture of the trait were able to achieve better predictive ability than methods that were not. For treatment response in RA, methods that assumed a complex underlying genetic architecture achieved slightly better prediction performance than methods that assumed a simplified genetic architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑紫伊完成签到,获得积分10
1秒前
2秒前
怕黑紫伊发布了新的文献求助10
3秒前
4秒前
颜万声完成签到,获得积分10
4秒前
WU完成签到,获得积分10
4秒前
LYegoist完成签到,获得积分10
5秒前
杨铭完成签到,获得积分20
7秒前
生椰lattee应助CQ采纳,获得10
7秒前
9秒前
hq完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助50
9秒前
无限尔云发布了新的文献求助30
10秒前
10秒前
Lucas应助超文献采纳,获得10
10秒前
13秒前
所所应助科研通管家采纳,获得10
13秒前
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
张文慧应助科研通管家采纳,获得10
13秒前
张文慧应助科研通管家采纳,获得10
13秒前
13秒前
云瑾应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
13秒前
ED应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得30
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
张文慧应助科研通管家采纳,获得10
14秒前
14秒前
冷静初彤应助无限尔云采纳,获得10
16秒前
16秒前
犇骉发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3876473
求助须知:如何正确求助?哪些是违规求助? 3419060
关于积分的说明 10711836
捐赠科研通 3143722
什么是DOI,文献DOI怎么找? 1734545
邀请新用户注册赠送积分活动 836833
科研通“疑难数据库(出版商)”最低求助积分说明 782823