From Hand-Crafted to Deep Learning-based Cancer Radiomics: Challenges and Opportunities.

机器学习 癌症 模式识别(心理学) 卷积神经网络
作者
Parnian Afshar,Arash Mohammadi,Konstantinos N. Plataniotis,Anastasia Oikonomou,Habib Benali
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:68
标识
DOI:10.1109/msp.2019.2900993
摘要

Recent advancements in signal processing and machine learning coupled with developments of electronic medical record keeping in hospitals and the availability of extensive set of medical images through internal/external communication systems, have resulted in a recent surge of significant interest in Radiomics is an emerging and relatively new research field, which refers to extracting semi-quantitative and/or quantitative features from medical images with the goal of developing predictive and/or prognostic models, and is expected to become a critical component for integration of image-derived information for personalized treatment in the near future. The conventional Radiomics workflow is typically based on extracting pre-designed features (also referred to as hand-crafted or engineered features) from a segmented region of interest. Nevertheless, recent advancements in deep learning have caused trends towards deep learning-based Radiomics (also referred to as discovery Radiomics). Considering the advantages of these two approaches, there are also hybrid solutions developed to exploit the potentials of multiple data sources. Considering the variety of approaches to Radiomics, further improvements require a comprehensive and integrated sketch, which is the goal of this article. This manuscript provides a unique interdisciplinary perspective on Radiomics by discussing state-of-the-art signal processing solutions in the context of Radiomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁某完成签到,获得积分10
刚刚
1秒前
青炀应助爱科研采纳,获得10
1秒前
He完成签到 ,获得积分10
2秒前
4秒前
sophyia发布了新的文献求助10
4秒前
老板别打烊完成签到,获得积分10
5秒前
朱朱朱完成签到,获得积分10
8秒前
包勇发布了新的文献求助10
8秒前
9秒前
wei发布了新的文献求助10
10秒前
12秒前
12秒前
善学以致用应助陈江河采纳,获得10
13秒前
13秒前
烟花应助踏山河采纳,获得10
13秒前
体贴花卷发布了新的文献求助10
14秒前
15秒前
独特雨灵完成签到,获得积分20
17秒前
阳光蛋挞发布了新的文献求助10
17秒前
19秒前
小猪发布了新的文献求助10
19秒前
20秒前
Ma发布了新的文献求助10
21秒前
21秒前
怕孤单的安蕾完成签到 ,获得积分10
23秒前
24秒前
陈江河发布了新的文献求助10
24秒前
25秒前
Zjjj0812发布了新的文献求助10
26秒前
26秒前
26秒前
梁海萍发布了新的文献求助10
27秒前
27秒前
灵巧雨寒完成签到,获得积分10
28秒前
赘婿应助Zjjj0812采纳,获得10
28秒前
斯文败类应助Ma采纳,获得10
29秒前
爆米花应助lijyuuu采纳,获得10
29秒前
踏山河发布了新的文献求助10
29秒前
Ice发布了新的文献求助10
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171475
求助须知:如何正确求助?哪些是违规求助? 3706954
关于积分的说明 11695834
捐赠科研通 3392549
什么是DOI,文献DOI怎么找? 1860819
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832754