SAMM: A Spontaneous Micro-Facial Movement Dataset

人工智能 面部表情 运动(音乐) 计算机科学 计算机视觉 心理学 模式识别(心理学) 语音识别 美学 艺术
作者
Adrian K. Davison,Cliff Lansley,Nicholas Costen,Kevin Tan,Moi Hoon Yap
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 116-129 被引量:543
标识
DOI:10.1109/taffc.2016.2573832
摘要

Micro-facial expressions are spontaneous, involuntary movements of the face when a person experiences an emotion but attempts to hide their facial expression, most likely in a high-stakes environment. Recently, research in this field has grown in popularity, however publicly available datasets of micro-expressions have limitations due to the difficulty of naturally inducing spontaneous micro-expressions. Other issues include lighting, low resolution and low participant diversity. We present a newly developed spontaneous micro-facial movement dataset with diverse participants and coded using the Facial Action Coding System. The experimental protocol addresses the limitations of previous datasets, including eliciting emotional responses from stimuli tailored to each participant. Dataset evaluation was completed by running preliminary experiments to classify micro-movements from non-movements. Results were obtained using a selection of spatio-temporal descriptors and machine learning. We further evaluate the dataset on emerging methods of feature difference analysis and propose an Adaptive Baseline Threshold that uses individualised neutral expression to improve the performance of micro-movement detection. In contrast to machine learning approaches, we outperform the state of the art with a recall of 0.91. The outcomes show the dataset can become a new standard for micro-movement data, with future work expanding on data representation and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多发论文早毕业完成签到,获得积分10
1秒前
桐桐应助Joker采纳,获得10
2秒前
2秒前
欣欣完成签到 ,获得积分10
2秒前
2秒前
钮南琴完成签到,获得积分10
3秒前
3秒前
Ww完成签到,获得积分10
3秒前
4秒前
小小王发布了新的文献求助10
4秒前
马先生完成签到,获得积分10
4秒前
今后应助昂无敌采纳,获得10
6秒前
6秒前
田博文发布了新的文献求助10
6秒前
上官若男应助Yolo采纳,获得10
6秒前
jie完成签到 ,获得积分10
7秒前
小铮发布了新的文献求助10
7秒前
精明的寒天完成签到,获得积分10
8秒前
8秒前
Tomsen发布了新的文献求助10
10秒前
eth完成签到 ,获得积分10
13秒前
罗亚亚完成签到,获得积分10
13秒前
真实的德天完成签到,获得积分10
13秒前
吉如天发布了新的文献求助10
14秒前
CipherSage应助wx1433285999采纳,获得10
15秒前
zwxzghgz完成签到,获得积分10
16秒前
16秒前
17秒前
wzswzs完成签到,获得积分10
17秒前
17秒前
茉行完成签到,获得积分10
18秒前
18秒前
18秒前
大模型应助心心念念采纳,获得10
20秒前
吃个馍馍完成签到,获得积分10
20秒前
wzswzs发布了新的文献求助30
21秒前
鲤鱼谷秋发布了新的文献求助10
21秒前
21秒前
LV完成签到 ,获得积分10
21秒前
zhao发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525055
求助须知:如何正确求助?哪些是违规求助? 4615431
关于积分的说明 14548146
捐赠科研通 4553473
什么是DOI,文献DOI怎么找? 2495321
邀请新用户注册赠送积分活动 1475890
关于科研通互助平台的介绍 1447635