故障检测与隔离
控制理论(社会学)
加权
执行机构
扩展卡尔曼滤波器
非线性系统
卡尔曼滤波器
人工神经网络
计算机科学
控制工程
工程类
观察员(物理)
断层(地质)
人工智能
控制(管理)
地震学
地质学
放射科
物理
医学
量子力学
作者
Alireza Abbaspour,Payam Aboutalebi,Kang K. Yen,Arman Sargolzaei
标识
DOI:10.1016/j.isatra.2016.11.005
摘要
A new online detection strategy is developed to detect faults in sensors and actuators of unmanned aerial vehicle (UAV) systems. In this design, the weighting parameters of the Neural Network (NN) are updated by using the Extended Kalman Filter (EKF). Online adaptation of these weighting parameters helps to detect abrupt, intermittent, and incipient faults accurately. We apply the proposed fault detection system to a nonlinear dynamic model of the WVU YF-22 unmanned aircraft for its evaluation. The simulation results show that the new method has better performance in comparison with conventional recurrent neural network-based fault detection strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI