凝聚态物理
磁场
自旋(空气动力学)
整改
旋转泵
物理
铁磁性
电子
自旋极化
作者
Zehan Yao,Huarui Fu,Wanyi Du,Yuanyuan Huang,Zhen Lei,Caiyin You,Xinlong Xu
标识
DOI:10.1103/physrevb.103.l201404
摘要
Metallic heterostructure as promising terahertz (THz) spintronic emitters has promoted the development of both spintronics and THz science. However, the underlying physics at the metallic interface, such as the nonlinear optical effect, remains unclear. Herein, we present interface magnetization induced THz generation from metallic heterostructure consisting of Heusler alloy CoFeMnSi (CFMS) and Pd thin films. THz generation is ascribed to 35% contribution from the magnetization-induced optical rectification (MOR) and 65% contribution from inverse spin Hall effect (ISHE) based on the pump polarization and sample azimuthal angle dependent measurement. Furthermore, the contribution ratio of the MOR decreases to 12% via lowering the CFMS grown temperature, which is due to the reduced crystalline quality and possible metal to semiconductor transformation in CFMS. Our results not only clarify MOR and ISHE in metallic heterostructure for the scientific field, but they also benefit THz source optimization for the technology field.
科研通智能强力驱动
Strongly Powered by AbleSci AI