油灰
脱钙骨基质
材料科学
数据库管理
生物相容性
复合数
生物陶瓷
脱盐
复合材料
生物医学工程
化学工程
核化学
化学
涂层
冶金
光电子学
放大器
工程类
CMOS芯片
搪瓷漆
医学
作者
I-Cheng Chen,Chen‐Ying Su,Chun-Cheih Lai,Yi‐Syue Tsou,Yudong Zheng,Hsu‐Wei Fang
摘要
Demineralized bone matrix (DBM) is a decalcified allo/xenograft retaining collagen and noncollagenous proteins, which has been extensively used because of its osteoconductive and osteoinductive properties. Calcium sulfate (CaSO4, CS) is a synthetic bone substitute used in bone healing with biocompatible, nontoxic, bioabsorbable, osteoconductive, and good mechanical characteristics. This study aims to prepare a DBM/CS composite bone graft material in a moldable putty form without compromising the peculiar properties of DBM and CS. For this purpose, firstly, porcine femur was defatted using chloroform/methanol and extracted by acid for demineralization, then freeze-dried and milled/sieved to obtain DBM powder. Secondly, the α-form and β-form of calcium sulfate hemihydrate (CaSO4·0.5H2O, CSH) were produced by heating gypsum (CaSO4·2H2O). The morphology and particle sizes of α- and β-CSH were obtained by SEM, and their chemical properties were confirmed by EDS, FTIR and XRD. Furthermore, the DBM-based graft was mixed with α- or β-CSH at a ratio of 9:1, and glycerol/4% HPMC was added as a carrier to produce a putty. DBM/CSH putty possesses a low washout rate, good mechanical strength and biocompatibility. In conclusion, we believe that the moldable DBM/CSH composite putty developed in this study could be a promising substitute for the currently available bone grafts, and might have practical application in the orthopedics field as a potential bone void filler.
科研通智能强力驱动
Strongly Powered by AbleSci AI