Promoting Rechargeable Batteries Operated at Low Temperature

电解质 阳极 电池(电) 扩散 电化学 锂(药物) 化学工程 储能 材料科学 化学 电极 纳米技术 热力学 物理 工程类 内分泌学 物理化学 功率(物理) 医学
作者
Xiaoli Dong,Yangang Wang,Yongyao Xia
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (20): 3883-3894 被引量:86
标识
DOI:10.1021/acs.accounts.1c00420
摘要

ConspectusBuilding rechargeable batteries for subzero temperature application is highly demanding for various specific applications including electric vehicles, grid energy storage, defense/space/subsea explorations, and so forth. Commercialized nonaqueous lithium ion batteries generally adapt to a temperature above -20 °C, which cannot well meet the requirements under colder conditions. Certain improvements have been achieved with nascent materials and electrolyte systems but have mainly been restrained to discharge and within a small rate at temperatures above -40 °C. Moreover, the recharging process of batteries based on the graphite anode still faces huge challenges from the simultaneous Li+ intercalation and potential Li stripping at subzero temperatures. Revealing the temperature-dependent evolution of physicochemical and electrochemical properties will greatly benefit our understanding of the limiting factors at low temperature, which is of significant importance.Herein, we dissect the ion movements in the liquid electrolyte and solid electrode as well as their interphase to analyze the temperature effect on Li+-diffusion behavior during charging/discharging processes. An electrolyte is the vital factor, and its ionic conductivity guarantees the smooth operation of the battery. However, it is the sluggish diffusion in the solid, especially the charge transfer at the solid electrolyte/electrode interfaces (SEI), that greatly limits the kinetics at low temperature. Many strategies have been put forward to tame electrolytes for low-temperature application. From a macroscopic point of view, multiple solvents are mixed to adjust the liquid temperature range and viscosity. With respect to the microscopic nature, research is focusing on the solvation structure by formulating the ratio of Li+ ions to solvent molecules. The binding energy of the Li+-solvent complex is crucial for the desolvation process at low temperature, which is manipulated with fluorinated solvents or other weakly solvating electrolytes. On the basis of an optimized electrolyte, electrodes and their reaction mechanism need to be coupled carefully because different materials show totally different responses to temperature change. To avoid the sluggish desolvation process or slow diffusion in the bulk intercalation compounds, several kinds of materials are summarized for low temperature use. The intercalation pseudocapacitive behavior can compensate for the kinetics to some extent, and a metal anode is a good candidate for replacing a graphite anode to build high-energy-density batteries at subzero temperature. It is also a wise choice to develop nascent battery chemistry based on the co-intercalation of solvent molecules into electrodes. Furthermore, the interfacial resistance contributes a lot at low temperature, which need be modified to accelerate the Li+ diffusion across the film. This will be linked to the electrolyte, exactly speaking, the solvation structure, to regulate the organic and inorganic components as well as the structure. Although it is difficult to investigate SEI on a graphite anode owing to its poor performance at low temperature, great efforts on Li metal anodes have offered some valuable information as reference. It is worth mentioning that the improvement in low-temperature performance calls for not only a change in the single composition but also the synergetic effect of each part in the whole battery. The elementary studies covered in this account could be taken as insight into some key strategies that help advance the low-temperature battery chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
学海无涯发布了新的文献求助10
1秒前
Ja4per发布了新的文献求助10
2秒前
无花果应助九九采纳,获得10
4秒前
小二郎应助clm采纳,获得10
5秒前
9秒前
12秒前
布吉岛应助孟怜烟采纳,获得10
12秒前
学术资源乞丐完成签到,获得积分10
14秒前
左诗云发布了新的文献求助10
18秒前
3366完成签到,获得积分10
18秒前
21秒前
Ja4per完成签到,获得积分10
22秒前
22秒前
syvshc完成签到,获得积分0
23秒前
方非笑应助动听牛排采纳,获得20
24秒前
靓丽的胜发布了新的文献求助10
27秒前
天真幻珊完成签到 ,获得积分10
27秒前
幸福大白发布了新的文献求助10
27秒前
王瑜发布了新的文献求助10
27秒前
英俊的铭应助孤独的问凝采纳,获得10
31秒前
31秒前
仙女的小可爱完成签到 ,获得积分10
34秒前
姚珍珠完成签到,获得积分10
36秒前
38秒前
38秒前
某某发布了新的文献求助10
38秒前
terence应助靓丽的胜采纳,获得30
39秒前
九九发布了新的文献求助10
42秒前
Jasontian发布了新的文献求助10
44秒前
45秒前
研友_nqadGn完成签到 ,获得积分10
46秒前
wanli445完成签到,获得积分10
47秒前
Lpc完成签到,获得积分10
47秒前
酷波er应助幸福大白采纳,获得10
50秒前
欢呼的凌兰完成签到,获得积分10
54秒前
wanci应助小古采纳,获得10
55秒前
传奇3应助大胆的火龙果采纳,获得10
56秒前
a。。。l完成签到 ,获得积分10
57秒前
秋雪瑶应助小圆羊爱吃肉采纳,获得10
57秒前
chong完成签到 ,获得积分10
1分钟前
高分求助中
泛血管医学: 概念及常见疾病诊治 1000
Teaching Social and Emotional Learning in Physical Education 1000
Guide to Using WVASE Spectroscopic Ellipsometry Data Acquisition and Analysis Software 600
De l'emploi d'une table chromatique pour les tâches de sang (une planche hors texte) 500
Multifunctionality Agriculture: A New Paradigm for European Agriculture and Rural Development 500
grouting procedures for ground source heat pump 500
ANDA Litigation: Strategies and Tactics for Pharmaceutical Patent Litigators Second 版本 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2336700
求助须知:如何正确求助?哪些是违规求助? 2025525
关于积分的说明 5069310
捐赠科研通 1774276
什么是DOI,文献DOI怎么找? 887639
版权声明 555852
科研通“疑难数据库(出版商)”最低求助积分说明 473188