Interfacial Solar Vapor Generation: Materials and Structural Design

材料科学 水蒸气 蒸发 海水淡化 太阳能 工艺工程 热的 传热 热力学 环境科学 化学 工程类 生物化学 生物 物理 有机化学 生态学
作者
Xinzhe Min,Bin Zhu,Bo Li,Jinlei Li,Jia Zhu
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:2 (4): 198-209 被引量:129
标识
DOI:10.1021/accountsmr.0c00104
摘要

ConspectusThe global water scarcity and deteriorating environment call for the development of environmentally friendly water treatment technologies. Solar-driven evaporation, well-known as a critical step of water cycles, provides a natural inspiration for water treatment and purification with a minimized carbon footprint. The emergence of interfacial solar vapor generation enabled through carefully tailored materials design in recent years offers an effective approach to enhance solar evaporation, with unique thermodynamic and kinetic advantages. Thermodynamically, by localizing absorbed solar energy at the water surface to avoid thermal dissipation into the entire body of water, high solar vapor transfer efficiency can be achieved. Kinetically, because of reduced thermal mass, a short response time of vapor generation and fast ramping of vapor temperature can be expected.In this perspective review, we start by exhibiting the structural designs of interfacial solar vapor generators to improve the energy transfer efficiency and evaporation rate: first, tuning optical structures to improve the light absorption; second, designing a two-dimensional water path and bioinspired structures to reduce the heat loss; third, harvesting environmental energy as an extra energy input to further increase the evaporation rate. Then, we demonstrate the intrinsic thermodynamic and kinetic advantages of interfacial solar evaporation for various applications. On the thermodynamic side, low energy loss and a high evaporation rate enable effective desalination and water treatment. While on the kinetic side, quick-response and high-temperature steam generation has direct implications in fields like sterilization and power generation. In the end, we briefly conclude the main challenges in fundamental and technical aspects as well as discuss various promising pathways for future development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aa完成签到,获得积分10
刚刚
1秒前
蚊蚊爱读书应助LONG采纳,获得10
1秒前
1秒前
大个应助nana采纳,获得10
2秒前
cure完成签到,获得积分10
2秒前
2秒前
2秒前
一小位同学完成签到,获得积分10
2秒前
李健的小迷弟应助dingdang采纳,获得10
2秒前
lucatiel完成签到,获得积分20
2秒前
铃铃发布了新的文献求助10
3秒前
时尚听筠完成签到,获得积分10
4秒前
4秒前
现实的千万完成签到,获得积分10
4秒前
雪白梦容发布了新的文献求助10
4秒前
Ry完成签到,获得积分10
5秒前
浮游应助OFF采纳,获得10
5秒前
大模型应助OFF采纳,获得10
5秒前
蜀安应助沉住气采纳,获得30
6秒前
123关注了科研通微信公众号
6秒前
乐乐应助mty采纳,获得10
6秒前
kinya发布了新的文献求助10
6秒前
ZYN发布了新的文献求助10
6秒前
6秒前
谢婉莹发布了新的文献求助10
7秒前
7秒前
研友_n2rqRn完成签到,获得积分10
7秒前
FOURTEENK关注了科研通微信公众号
9秒前
Lucas应助偷酒的馒头猫采纳,获得10
9秒前
10秒前
10秒前
干净的冷安应助LONG采纳,获得10
10秒前
小晴空完成签到,获得积分10
11秒前
享受不良诱惑完成签到,获得积分10
11秒前
11秒前
乐乐应助典雅的幼菱采纳,获得10
11秒前
亦木澜发布了新的文献求助10
12秒前
12秒前
22222完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473731
求助须知:如何正确求助?哪些是违规求助? 4575854
关于积分的说明 14354983
捐赠科研通 4503456
什么是DOI,文献DOI怎么找? 2467655
邀请新用户注册赠送积分活动 1455459
关于科研通互助平台的介绍 1429497