Learning compositional models of robot skills for task and motion planning

计算机科学 多样性(控制论) 人工智能 任务(项目管理) 机器人 机器人学 机器学习 平面图(考古学) 运动规划 运动(物理) 时间范围 人机交互 强化学习 工程类 数学 数学优化 考古 系统工程 历史
作者
Zi Wang,Caelan Reed Garrett,Leslie Pack Kaelbling,Tomás Lozano‐Pérez
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:40 (6-7): 866-894 被引量:47
标识
DOI:10.1177/02783649211004615
摘要

The objective of this work is to augment the basic abilities of a robot by learning to use sensorimotor primitives to solve complex long-horizon manipulation problems. This requires flexible generative planning that can combine primitive abilities in novel combinations and, thus, generalize across a wide variety of problems. In order to plan with primitive actions, we must have models of the actions: under what circumstances will executing this primitive successfully achieve some particular effect in the world? We use, and develop novel improvements to, state-of-the-art methods for active learning and sampling. We use Gaussian process methods for learning the constraints on skill effectiveness from small numbers of expensive-to-collect training examples. In addition, we develop efficient adaptive sampling methods for generating a comprehensive and diverse sequence of continuous candidate control parameter values (such as pouring waypoints for a cup) during planning. These values become end-effector goals for traditional motion planners that then solve for a full robot motion that performs the skill. By using learning and planning methods in conjunction, we take advantage of the strengths of each and plan for a wide variety of complex dynamic manipulation tasks. We demonstrate our approach in an integrated system, combining traditional robotics primitives with our newly learned models using an efficient robot task and motion planner. We evaluate our approach both in simulation and in the real world through measuring the quality of the selected primitive actions. Finally, we apply our integrated system to a variety of long-horizon simulated and real-world manipulation problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiao_Ye发布了新的文献求助50
刚刚
小熊猫发布了新的文献求助10
1秒前
蓝天完成签到,获得积分10
2秒前
隐形曼青应助hyx采纳,获得10
3秒前
糕糕完成签到,获得积分10
3秒前
共享精神应助哈哈哈哈哈采纳,获得10
4秒前
西西发布了新的文献求助10
5秒前
yst完成签到,获得积分20
5秒前
天天快乐应助义气的丹萱采纳,获得10
6秒前
Treasure完成签到,获得积分10
7秒前
科研通AI5应助清枫采纳,获得10
7秒前
爆米花应助米奇妙妙虫采纳,获得10
8秒前
科研通AI5应助云之上采纳,获得10
8秒前
科研通AI2S应助ssw采纳,获得10
9秒前
12秒前
垃圾桶发布了新的文献求助30
12秒前
13秒前
Hello应助Math4396采纳,获得10
14秒前
小陆发布了新的文献求助10
14秒前
14秒前
15秒前
17秒前
沐夏完成签到,获得积分10
17秒前
yst发布了新的文献求助10
18秒前
科研通AI5应助小熊猫采纳,获得30
18秒前
19秒前
合适忆之完成签到,获得积分10
19秒前
19秒前
不要加糖发布了新的文献求助10
20秒前
徐果发布了新的文献求助10
21秒前
yyxmh羽儿发布了新的文献求助10
21秒前
慈祥的蛋挞完成签到,获得积分10
21秒前
jx完成签到,获得积分10
21秒前
22秒前
多情宛海完成签到 ,获得积分10
22秒前
Math4396发布了新的文献求助10
23秒前
妞妞完成签到,获得积分10
23秒前
科研通AI5应助秦pale采纳,获得10
25秒前
25秒前
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150