Vehicle Delay Estimation at Signalized Intersections Using Machine Learning Algorithms

交叉口(航空) 计算机科学 支持向量机 估计 启发式 梯度升压 随机森林 机器学习 算法 人工智能 工程类 运输工程 系统工程
作者
Muhammed Emin Cihangir Bağdatlı,Ahmet Şakir Dokuz
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2675 (9): 110-126 被引量:24
标识
DOI:10.1177/03611981211036874
摘要

Accurate determination of average vehicle delays is significant for effective management of a signalized intersection. The vehicle delays can be determined by field studies, however, this approach is costly and time consuming. Analytical methods which are commonly utilized to estimate delay cannot generate accurate estimates, especially in oversaturated traffic flow conditions. Delay estimation models based on artificial intelligence have been presented in the literature in recent years to estimate the delay more accurately. However, the number of artificial/heuristic intelligence techniques utilized for vehicle delay estimation is limited in the literature. In this study, estimation models are developed using four different machine learning methods—support vector regression (SVR), random forest (RF), k nearest neighbor (kNN), and extreme gradient boosting (XGBoost)—that have not previously been applied in the literature for vehicle delay estimation at signalized intersections. The models were tested with data collected from 12 signalized intersections located in Ankara, the capital of Turkey, and the performance of the models was revealed. The models were furthermore compared with successful delay models from the literature. The developed models, in particular the RF and XGBoost models, showed high performance in estimating the delay at signalized intersections under different traffic conditions. The results indicate that the delay estimation models based on the RF and XGBoost techniques can significantly contribute to both the literature and practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
萝卜卷心菜完成签到 ,获得积分10
3秒前
四月完成签到 ,获得积分10
4秒前
SYLH应助Singularity采纳,获得20
5秒前
火星上易真完成签到 ,获得积分10
5秒前
6秒前
杰克李李完成签到,获得积分10
8秒前
凌兰完成签到 ,获得积分10
8秒前
虚幻采枫完成签到,获得积分10
9秒前
10秒前
jiujieweizi完成签到 ,获得积分10
13秒前
13秒前
14秒前
充电宝应助颜凡桃采纳,获得30
14秒前
良璞发布了新的文献求助10
14秒前
充电宝应助简单的幻儿采纳,获得10
15秒前
我是老大应助宝丁壳采纳,获得10
15秒前
司藤完成签到 ,获得积分10
17秒前
17秒前
文献互助1完成签到 ,获得积分10
17秒前
18秒前
谈舒怡发布了新的文献求助30
19秒前
Heidi完成签到 ,获得积分10
21秒前
howl发布了新的文献求助10
22秒前
25秒前
NexusExplorer应助QiranSheng采纳,获得10
26秒前
在水一方应助CX330采纳,获得10
34秒前
35秒前
36秒前
38秒前
40秒前
FashionBoy应助谈舒怡采纳,获得10
41秒前
程住气完成签到 ,获得积分10
42秒前
深情安青应助King16采纳,获得10
44秒前
46秒前
科研小白一枚完成签到,获得积分10
47秒前
小二郎应助自由的寄灵采纳,获得10
48秒前
小镇的废物完成签到,获得积分10
49秒前
隐形曼青应助满意的梦竹采纳,获得10
49秒前
图图发布了新的文献求助10
52秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846089
求助须知:如何正确求助?哪些是违规求助? 3388480
关于积分的说明 10553124
捐赠科研通 3108972
什么是DOI,文献DOI怎么找? 1713299
邀请新用户注册赠送积分活动 824692
科研通“疑难数据库(出版商)”最低求助积分说明 774982