COARSE-EMOA: An indicator-based evolutionary algorithm for solving equality constrained multi-objective optimization problems

水准点(测量) 计算机科学 数学优化 集合(抽象数据类型) 多目标优化 约束(计算机辅助设计) 进化算法 帕累托原理 算法 变量(数学) 最优化问题 数学 几何学 数学分析 大地测量学 程序设计语言 地理
作者
Jesús L. Llano García,Raúl Monroy,Víctor Adrián Sosa Hernández,Carlos A. Coello Coello
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:67: 100983-100983 被引量:27
标识
DOI:10.1016/j.swevo.2021.100983
摘要

Many real-world applications involve dealing with several conflicting objectives which need to be optimized simultaneously. Moreover, these problems may require the consideration of limitations that restrict their decision variable space. Evolutionary Algorithms (EAs) are capable of tackling Multi-objective Optimization Problems (MOPs). However, these approaches struggle to accurately approximate a feasible solution when considering equality constraints as part of the problem due to the inability of EAs to find and keep solutions exactly at the constraint boundaries. Here, we present an indicator-based evolutionary multi-objective optimization algorithm (EMOA) for tackling Equality Constrained MOPs (ECMOPs). In our proposal, we adopt an artificially constructed reference set closely resembling the feasible Pareto front of an ECMOP to calculate the Inverted Generational Distance of a population, which is then used as a density estimator. An empirical study over a set of benchmark problems each of which contains at least one equality constraint was performed to test the capabilities of our proposed COnstrAined Reference SEt - EMOA (COARSE-EMOA). Our results are compared to those obtained by six other EMOAs. As will be shown, our proposed COARSE-EMOA can properly approximate a feasible solution by guiding the search through the use of an artificially constructed set that approximates the feasible Pareto front of a given problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zkk完成签到 ,获得积分10
1秒前
2秒前
科研通AI5应助牛马采纳,获得10
2秒前
如意的馒头完成签到 ,获得积分10
2秒前
3秒前
慕容杏子完成签到,获得积分10
3秒前
科研无助人完成签到,获得积分10
3秒前
3秒前
fishhh发布了新的文献求助10
6秒前
痴情的靖柔完成签到 ,获得积分10
6秒前
医生小白完成签到 ,获得积分0
8秒前
荼蘼如雪发布了新的文献求助10
8秒前
feilong完成签到,获得积分10
10秒前
10秒前
登山人完成签到,获得积分10
11秒前
djdh完成签到 ,获得积分10
12秒前
LW完成签到,获得积分10
12秒前
plant完成签到,获得积分10
14秒前
15秒前
HonestLiang完成签到,获得积分10
16秒前
17秒前
fishhh完成签到,获得积分10
18秒前
香蕉觅云应助荼蘼如雪采纳,获得10
19秒前
中华牌老阿姨完成签到,获得积分10
19秒前
hi_traffic完成签到,获得积分10
22秒前
kaka完成签到,获得积分10
24秒前
牛马发布了新的文献求助10
24秒前
执着的忆雪完成签到,获得积分10
24秒前
肖淑美完成签到 ,获得积分10
24秒前
高山流水完成签到 ,获得积分10
25秒前
月月完成签到,获得积分10
25秒前
plain完成签到,获得积分10
26秒前
lxlcx完成签到,获得积分0
26秒前
shouyu29完成签到,获得积分0
27秒前
wulixin完成签到,获得积分10
30秒前
慧喆完成签到 ,获得积分10
31秒前
Yoo完成签到 ,获得积分10
31秒前
开心的萝莉完成签到,获得积分10
32秒前
Conner完成签到 ,获得积分10
32秒前
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Friction Capacity of Piles Driven into Clay 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379721
关于积分的说明 10510250
捐赠科研通 3099320
什么是DOI,文献DOI怎么找? 1707062
邀请新用户注册赠送积分活动 821413
科研通“疑难数据库(出版商)”最低求助积分说明 772615