DRLS: A Deep Reinforcement Learning Based Scheduler for Time-Triggered Ethernet

计算机科学 强化学习 调度(生产过程) 启发式 分布式计算 网络拓扑 解算器 作业车间调度 可扩展性 整数规划 地铁列车时刻表 人工智能 数学优化 计算机网络 算法 数学 数据库 操作系统 程序设计语言
作者
Chunmeng Zhong,Hongyu Jia,Hai Wan,Xibin Zhao
标识
DOI:10.1109/icccn52240.2021.9522239
摘要

Time-triggered (TT) communication has long been studied in various industrial domains. The most challenging task of TT communication is to find a feasible schedule table. Network changes are inevitable due to the topology dynamics, varying data transmission requirements, etc. Once changes occur, the schedule table needs to be re-calculated in a timely manner. Solver-based methods and heuristic-based methods were proposed to solve this problem. However, solver-based methods employ integer linear programming (ILP) or satisfiability modulo theories (SMT) which have high computational complexity. On the other hand, heuristic-based methods are fast, but they need to be handcrafted based on the application characteristics. Thus, these methods are not general enough to work in complex scenarios especially in large networks.In this paper we propose DRLS – Deep Reinforcement Learning based TT Scheduling method. DRLS first trains an application or network specific scheduling agent offline. Then, the agent can be used for online scheduling of TT flows. However, off-the-shelf reinforcement learning techniques cannot handle the TT scheduling problem with typical complexity and scale. DRLS provides novel solutions to this challenge, including three key innovations: new representations for TT network adapted to various topologies, proper deep neural network (DNN) structures to capture network characteristics, and scalable reinforcement learning (RL) models to handle online TT scheduling. Comprehensive experiments have been conducted to compare the performance of DRLS and other methods (heuristics-based methods such as HLS, LS, HLD + LD, LS + LD, and ILP-based method). The results show that DRLS can not only adapt to specific network topologies, but also have better performance: runs much faster than ILP solver-based methods, and schedules about 23.9% more flows than traditional handcrafted heuristic-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
呐呐呐发布了新的文献求助10
1秒前
tyq完成签到,获得积分10
1秒前
3秒前
千里光发布了新的文献求助20
4秒前
4秒前
独角兽完成签到,获得积分10
4秒前
顾矜应助许钰莹采纳,获得10
4秒前
majf发布了新的文献求助10
5秒前
Clara凤完成签到,获得积分10
5秒前
6秒前
6秒前
含蓄薯片完成签到 ,获得积分10
6秒前
6秒前
围城发布了新的文献求助20
6秒前
6秒前
flower完成签到,获得积分10
7秒前
9秒前
英俊的铭应助hhhhhhwwwww采纳,获得10
9秒前
10秒前
满满完成签到,获得积分20
10秒前
陈夏萍完成签到 ,获得积分10
11秒前
11秒前
谷蓝发布了新的文献求助10
11秒前
许钰莹给许钰莹的求助进行了留言
11秒前
蝶子王发布了新的文献求助10
12秒前
12秒前
汤姆完成签到,获得积分10
13秒前
周常通完成签到,获得积分10
13秒前
momo发布了新的文献求助10
14秒前
曾经宛秋发布了新的文献求助10
14秒前
16秒前
crazyrock完成签到,获得积分10
16秒前
flac完成签到,获得积分10
17秒前
小蘑菇应助Gryphon采纳,获得10
17秒前
19秒前
19秒前
19秒前
爱听歌的冷安完成签到,获得积分10
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496437
求助须知:如何正确求助?哪些是违规求助? 4594109
关于积分的说明 14443587
捐赠科研通 4526726
什么是DOI,文献DOI怎么找? 2480376
邀请新用户注册赠送积分活动 1464913
关于科研通互助平台的介绍 1437703