Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved.

程序性细胞死亡 细胞凋亡 细胞生物学 DNA断裂 生物 细胞 碎片(计算) 成纤维细胞 细胞培养 表型 基因 分子生物学 遗传学 生态学
作者
Eugenia Wang
出处
期刊:PubMed 卷期号:55 (11): 2284-92 被引量:152
链接
标识
摘要

Programmed cell death (apoptosis) is an active process by which cells initiate their own self-destruction. Growing evidence shows that this event is controlled by the activation of unique gene expression; some function as survival genes, such as bcl2, and others as killer genes, such as ced3 or interleukin converting enzyme. Likewise, external factors, such as the presence or absence of stimuli in the microenvironment of a cell, play a key role in ushering it towards survival or suicidal fate. Previously, I and others have reported that withdrawal of serum from culture medium can induce contact-inhibited quiescent mouse 3T3 fibroblasts to undergo rapid programmed cell death, as evidenced by the presence of massive DNA fragmentation within 24 h. I now report that, although the same process of serum withdrawal is capable of inducing apoptotic death in quiescent young human fibroblasts, the process takes as long as 2 weeks. Repeated attempts at the same serum withdrawal with cultures of senescent human fibroblasts show that phenotypic signs of apoptosis, such as DNA fragmentation and loss of cell viability, are not observed for up to 4 weeks; I suggest that in vitro aged human fibroblasts are resistant to undergoing programmed cell death. I have investigated the level of bcl2 presence as a possible protector of senescent human fibroblasts from apoptotic death; biochemical characterization shows that in mouse as well as human fibroblasts, bcl2 is present as an easily extractable (0.1% Triton) cytoplasmic protein. bcl2 level is in inverse relationship with the ease of induction of apoptotic death between young and senescent human fibroblasts. Immunofluorescence staining shows that, in senescent human fibroblasts, bcl2 is present not only in the cytoplasmic punctate spots seen in both mouse and young human fibroblasts but also in the nuclei as well as large granules surrounding the nuclei. Upon serum deprivation, the bcl2 level is reduced to undetectable in mouse 3T3 fibroblasts within 24 h and in young and intermediate aged human fibroblasts within 2 weeks; however, it remains unchanged in senescent human fibroblasts after the deprivation of serum for 2 weeks. These findings lead me to conclude that senescent fibroblasts are resistant to the induction of apoptotic death by serum deprivation. Furthermore, I suggest that repeated serial passaging during the in vitro aging process has inadvertently instituted a molecular mechanism whereby the bcl2 level cannot be repressed upon serum deprivation, which may subsequently allow senescent fibroblasts to be long-lived and protected from self-destruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水123发布了新的文献求助10
刚刚
刚刚
4秒前
4秒前
chenu完成签到 ,获得积分10
5秒前
7秒前
胜天半子完成签到 ,获得积分10
9秒前
清云应助Bryn采纳,获得10
10秒前
活力的难摧完成签到,获得积分10
11秒前
可乐发布了新的文献求助10
14秒前
机灵的友儿完成签到 ,获得积分10
17秒前
19秒前
Ava应助小咪哦哦采纳,获得10
22秒前
22秒前
30秒前
32秒前
33秒前
科研通AI5应助cc采纳,获得10
34秒前
Owen应助科研通管家采纳,获得10
35秒前
Ava应助科研通管家采纳,获得10
35秒前
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
大模型应助科研通管家采纳,获得10
35秒前
英姑应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得30
35秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
顾矜应助科研通管家采纳,获得10
36秒前
36秒前
英俊的铭应助科研通管家采纳,获得10
36秒前
传奇3应助科研通管家采纳,获得10
36秒前
Orange应助科研通管家采纳,获得10
36秒前
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
汉堡包应助科研通管家采纳,获得10
36秒前
一个发布了新的文献求助10
37秒前
38秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846757
求助须知:如何正确求助?哪些是违规求助? 3389276
关于积分的说明 10556662
捐赠科研通 3109636
什么是DOI,文献DOI怎么找? 1713853
邀请新用户注册赠送积分活动 825000
科研通“疑难数据库(出版商)”最低求助积分说明 775137