聚苯胺
吸附
水溶液
X射线光电子能谱
氧化物
解吸
吸附
化学
核化学
石墨烯
材料科学
无机化学
化学工程
有机化学
纳米技术
聚合物
工程类
聚合
作者
Yubing Sun,Dadong Shao,Changlun Chen,Shubin Yang,Xiangke Wang
摘要
Graphene oxide-supported polyaniline (PANI@GO) composites were synthesized by chemical oxidation and were characterized by SEM, Raman and FT-IR spectroscopy, TGA, potentiometric titrations, and XPS. The characterization indicated that PANI can be grafted onto the surface of GO nanosheets successfully. The sorption of U(VI), Eu(III), Sr(II), and Cs(I) from aqueous solutions as a function of pH and initial concentration on the PANI@GO composites was investigated. The maximum sorption capacities of U(VI), Eu(III), Sr(II), and Cs(I) on the PANI@GO composites at pH 3.0 and T = 298 K calculated from the Langmuir model were 1.03, 1.65, 1.68, and 1.39 mmol·g–1, respectively. According to the XPS analysis of the PANI@GO composites before and after Eu(III) desorption, nitrogen- and oxygen-containing functional groups on the surface of PANI@GO composites were responsible for radionuclide sorption, and that radionuclides can hardly be extracted from the nitrogen-containing functional groups. Therefore, the chemical affinity of radionuclides for nitrogen-containing functional groups is stronger than that for oxygen-containing functional groups. This paper focused on the application of PANI@GO composites as suitable materials for the preconcentration and removal of lanthanides and actinides from aqueous solutions in environmental pollution management in a wide range of acidic to alkaline conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI