亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Amp: A modular approach to machine learning in atomistic simulations

模块化设计 电子结构 机器学习 插值(计算机图形学) 计算机科学 统计物理学 人工智能 物理 量子力学 运动(物理) 操作系统
作者
Alireza Khorshidi,Andrew A. Peterson
出处
期刊:Computer Physics Communications [Elsevier BV]
卷期号:207: 310-324 被引量:336
标识
DOI:10.1016/j.cpc.2016.05.010
摘要

Electronic structure calculations, such as those employing Kohn–Sham density functional theory or ab initio wavefunction theories, have allowed for atomistic-level understandings of a wide variety of phenomena and properties of matter at small scales. However, the computational cost of electronic structure methods drastically increases with length and time scales, which makes these methods difficult for long time-scale molecular dynamics simulations or large-sized systems. Machine-learning techniques can provide accurate potentials that can match the quality of electronic structure calculations, provided sufficient training data. These potentials can then be used to rapidly simulate large and long time-scale phenomena at similar quality to the parent electronic structure approach. Machine-learning potentials usually take a bias-free mathematical form and can be readily developed for a wide variety of systems. Electronic structure calculations have favorable properties–namely that they are noiseless and targeted training data can be produced on-demand–that make them particularly well-suited for machine learning. This paper discusses our modular approach to atomistic machine learning through the development of the open-source Atomistic Machine-learning Package (Amp), which allows for representations of both the total and atom-centered potential energy surface, in both periodic and non-periodic systems. Potentials developed through the atom-centered approach are simultaneously applicable for systems with various sizes. Interpolation can be enhanced by introducing custom descriptors of the local environment. We demonstrate this in the current work for Gaussian-type, bispectrum, and Zernike-type descriptors. Amp has an intuitive and modular structure with an interface through the python scripting language yet has parallelizable fortran components for demanding tasks; it is designed to integrate closely with the widely used Atomic Simulation Environment (ASE), which makes it compatible with a wide variety of commercial and open-source electronic structure codes. We finally demonstrate that the neural network model inside Amp can accurately interpolate electronic structure energies as well as forces of thousands of multi-species atomic systems. Program title: Amp Catalogue identifier: AFAK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFAK_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 21239 No. of bytes in distributed program, including test data, etc.: 1412975 Distribution format: tar.gz Programming language: Python, Fortran. Computer: PC, Mac. Operating system: Linux, Mac, Windows. Has the code been vectorized or parallelized?: Yes RAM: Variable, depending on the number and size of atomic systems. Classification: 16.1, 2.1. External routines: ASE, NumPy, SciPy, f2py, matplotlib Nature of problem: Atomic interactions within many-body systems typically have complicated functional forms, difficult to represent in simple pre-decided closed-forms. Solution method: Machine learning provides flexible functional forms that can be improved as new situations are encountered. Typically, interatomic potentials yield from machine learning simultaneously apply to different system sizes. Unusual features: Amp is as modular as possible, providing a framework for the user to create atomic environment descriptor and regression model at will. Moreover, it has Atomic Simulation Environment (ASE) interface, facilitating interactive collaboration with other electronic structure calculators within ASE. Running time: Variable, depending on the number and size of atomic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rzxhygr发布了新的文献求助10
3秒前
李在猛完成签到 ,获得积分10
5秒前
筱筱完成签到 ,获得积分10
5秒前
15秒前
23秒前
27秒前
Qinqinasm完成签到,获得积分10
35秒前
36秒前
刘刘完成签到 ,获得积分10
36秒前
萧萧发布了新的文献求助10
42秒前
领导范儿应助萧萧采纳,获得10
47秒前
大个应助科研通管家采纳,获得10
53秒前
慕青应助科研通管家采纳,获得10
53秒前
polaris完成签到,获得积分10
56秒前
58秒前
从容芮应助OCDer采纳,获得150
59秒前
Wfmmm完成签到,获得积分10
1分钟前
不开心就吃糖完成签到 ,获得积分10
1分钟前
激情的代曼完成签到,获得积分10
1分钟前
晓鸭的平凡世界完成签到,获得积分10
1分钟前
万能图书馆应助yaya采纳,获得10
1分钟前
1分钟前
1分钟前
Thi发布了新的文献求助10
1分钟前
科研通AI2S应助cece采纳,获得10
1分钟前
crainbowc完成签到,获得积分10
2分钟前
ding应助fly采纳,获得10
2分钟前
这只蝴蝶在乎完成签到 ,获得积分10
2分钟前
金蛋蛋完成签到 ,获得积分10
2分钟前
2分钟前
HEIKU应助77采纳,获得10
2分钟前
珂珂完成签到 ,获得积分10
2分钟前
77应助文件撤销了驳回
2分钟前
田様应助fly采纳,获得10
2分钟前
2分钟前
花花521完成签到,获得积分10
2分钟前
弧光完成签到 ,获得积分10
2分钟前
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3901807
求助须知:如何正确求助?哪些是违规求助? 3446507
关于积分的说明 10844894
捐赠科研通 3171617
什么是DOI,文献DOI怎么找? 1752407
邀请新用户注册赠送积分活动 847230
科研通“疑难数据库(出版商)”最低求助积分说明 789757