Classification and recognition of black tea with different degrees of rolling based on machine vision technology and machine learning algorithms

人工智能 机器学习 色度计 计算机科学 特征(语言学) 红茶 机器视觉 过程(计算) 变量(数学) 统计分类 特征提取 模式识别(心理学) 算法 非线性系统 随机森林 精确性和召回率 支持向量机 颜色模型 质量(理念) 钥匙(锁) 黑匣子 理论(学习稳定性) 上下文图像分类 数学
作者
Hanting Zou,Xiao-Lan Yu,Tianmeng Lan,Du Qizhen,Yongwen Jiang,Haibo Yuan
出处
期刊:Heliyon [Elsevier]
卷期号:11 (14): e43862-e43862
标识
DOI:10.1016/j.heliyon.2025.e43862
摘要

Rolling is an important process for the formation of sensory quality of black tea, and it is also the key process to lay the material foundation for the subsequent fermentation. Currently, in the production practice, the evaluation of the degree of rolling still mainly depends on the sensory indicators such as the color change of the rolled leaves. This processing suitability evaluation methods based on subjective experience have the problem of insufficient stability. Based on this, according to the color features of samples under different rolling time series, combined with the classification models, this study aims to establish the objective classification methods for the degree of black tea rolling. Firstly, this study employed a portable colorimeter and a machine vision system to synchronously capture the mean values of both local and global color features from samples at different rolling stages. Then, classification models are constructed based on local and global color information respectively, and the feasibility of using RGB, HSV, and La*b* color models to evaluate the degrees of rolling is investigated. The effects of different color feature variables on the classification accuracy of the models are systematically compared, and the performance differences between linear and nonlinear classification methods are analyzed. The results show that the best classification effect can be obtained by using B-S-a* feature variable combination and nonlinear classification method. Among them, RBF-SVM and RF are identified as the optimal modeling methods. The overall accuracies of the models are 97.5 %, and they show high precision and recall rate in the classification of samples with different rolling degrees. This study provides a quantifiable evaluation method for the rapid and objective discrimination of the rolling degree of black tea.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶茶一天一杯完成签到,获得积分10
1秒前
1秒前
2秒前
利子发布了新的文献求助10
2秒前
Trip_wyb发布了新的文献求助10
2秒前
小明应助lihuachi采纳,获得10
4秒前
无宇伦比完成签到,获得积分10
4秒前
汉堡肉发布了新的文献求助10
4秒前
tczw667完成签到,获得积分10
4秒前
zzzccclll完成签到,获得积分20
5秒前
Tsin778发布了新的文献求助10
5秒前
星辰大海应助mmm采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
王一正完成签到,获得积分10
7秒前
大模型应助阳光的伊采纳,获得10
7秒前
8秒前
AbeleChuang完成签到,获得积分10
9秒前
9秒前
zoe完成签到,获得积分20
9秒前
cxz完成签到,获得积分10
9秒前
9秒前
满登完成签到,获得积分10
10秒前
10秒前
狗头发布了新的文献求助10
12秒前
12秒前
万能图书馆应助李端端采纳,获得10
12秒前
小小彤发布了新的文献求助10
14秒前
15秒前
16秒前
斯文败类应助he采纳,获得10
16秒前
饭鹅发布了新的文献求助10
16秒前
单阁发布了新的文献求助50
16秒前
Lucas应助卡拉马采纳,获得10
16秒前
17秒前
香蕉觅云应助阔口阔落采纳,获得10
19秒前
xyz发布了新的文献求助30
19秒前
19秒前
19秒前
阳光的伊发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508769
求助须知:如何正确求助?哪些是违规求助? 4603814
关于积分的说明 14487899
捐赠科研通 4538341
什么是DOI,文献DOI怎么找? 2486923
邀请新用户注册赠送积分活动 1469458
关于科研通互助平台的介绍 1441678