Flower Mapping in Grasslands With Drones and Deep Learning

无人机 外推法 丰度(生态学) 人工智能 物候学 计算机科学 分类 深度学习 管道(软件) 对象(语法) 模式识别(心理学) 生态学 生物 数学 统计 植物 程序设计语言 情报检索
作者
Johannes Gallmann,Béatrice Schüpbach,Katja Jacot,Matthias Albrecht,Jonas Winizki,Norbert Kirchgeßner,Helge Aasen
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:12 被引量:34
标识
DOI:10.3389/fpls.2021.774965
摘要

Manual assessment of flower abundance of different flowering plant species in grasslands is a time-consuming process. We present an automated approach to determine the flower abundance in grasslands from drone-based aerial images by using deep learning (Faster R-CNN) object detection approach, which was trained and evaluated on data from five flights at two sites. Our deep learning network was able to identify and classify individual flowers. The novel method allowed generating spatially explicit maps of flower abundance that met or exceeded the accuracy of the manual-count-data extrapolation method while being less labor intensive. The results were very good for some types of flowers, with precision and recall being close to or higher than 90%. Other flowers were detected poorly due to reasons such as lack of enough training data, appearance changes due to phenology, or flowers being too small to be reliably distinguishable on the aerial images. The method was able to give precise estimates of the abundance of many flowering plant species. In the future, the collection of more training data will allow better predictions for the flowers that are not well predicted yet. The developed pipeline can be applied to any sort of aerial object detection problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
arya发布了新的文献求助10
刚刚
1秒前
1秒前
颖火虫发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
zhang发布了新的文献求助10
3秒前
3秒前
无极微光应助kid1412采纳,获得20
4秒前
雨雨完成签到 ,获得积分10
4秒前
阿白发布了新的文献求助10
4秒前
火星上的夏青完成签到,获得积分10
5秒前
5秒前
伯赏无极完成签到,获得积分10
6秒前
6秒前
老丫大侠完成签到 ,获得积分10
7秒前
今后应助颖火虫采纳,获得10
7秒前
7秒前
丁一发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
林娜琏发布了新的文献求助10
10秒前
Neonoes完成签到,获得积分10
10秒前
10秒前
日天的马铃薯完成签到,获得积分10
10秒前
sing完成签到,获得积分10
12秒前
12秒前
乐观的夏彤完成签到,获得积分20
12秒前
12秒前
白白发布了新的文献求助10
13秒前
幽默白竹发布了新的文献求助10
13秒前
pattzz完成签到 ,获得积分20
13秒前
13秒前
13秒前
田様应助WHUT-Batteries采纳,获得10
15秒前
arya完成签到,获得积分10
15秒前
Eternal芾夏完成签到,获得积分10
16秒前
wanci应助七七采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
Cowries - A Guide to the Gastropod Family Cypraeidae. Volume 2: Shells and Animals 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4951099
求助须知:如何正确求助?哪些是违规求助? 4213924
关于积分的说明 13106181
捐赠科研通 3995679
什么是DOI,文献DOI怎么找? 2187014
邀请新用户注册赠送积分活动 1202236
关于科研通互助平台的介绍 1115447