An automatic data process line identification method for dam safety monitoring data outlier detection

离群值 异常检测 计算机科学 鉴定(生物学) 过程(计算) 数据挖掘 人工智能 直线(几何图形) 模式识别(心理学) 数学 几何学 植物 生物 操作系统
作者
Sen Zheng,Chenfei Shao,Chongshi Gu,Yanxin Xu
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (7) 被引量:17
标识
DOI:10.1002/stc.2948
摘要

In order to discover anomalies of dam structure behaviors and evaluate the operation status timely, it is quite demanding to analyze the dam safety monitoring data that has been collected from the instruments. However, outliers in original monitoring data may affect the accuracy of dam performance assessment, which need to be detected before analyzing monitoring data. Model-based methods have been applied in outlier detection as a kind of common method for a long time, but they generally rely heavily on model accuracy and easily lead to misjudgment of outliers once the data structure is complex. Considering the monitoring data of dam effect variables (e.g., deformation, cracking, or seepage) tend to show strong continuity, complex periodic and trending changes with the environment, valid monitoring data can reflect the variation trend by forming a data process line. Therefore, data that deviate from the process line can be detected as outliers. In this paper, an automatic process line identification method for dam safety monitoring data outlier detection is proposed. First, after drawing a scatter plot of the dam monitoring data, a binary image of the scatter plot is inputted into the computer program. Afterwards, the binary image would be processed by Gaussian blur and image binarization techniques, and then the continuous points could be identified. After constant adjustment of the vertical ordinate range and introducing Cuckoo Search (CS) algorithm, the optimal process line identification and outlier detection were finally completed. The case studies demonstrate the proposed method can enhance the efficiency of outlier detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助wwwwrrrrr采纳,获得10
1秒前
Monicadd完成签到 ,获得积分10
2秒前
lucky完成签到,获得积分10
2秒前
GGBond发布了新的文献求助10
2秒前
革微桂完成签到 ,获得积分10
3秒前
JamesPei应助AutuMg采纳,获得10
5秒前
hb完成签到,获得积分10
8秒前
yoonkk完成签到,获得积分10
9秒前
10秒前
成就的紫烟完成签到,获得积分10
11秒前
11秒前
乐乐应助Cfj818268采纳,获得10
12秒前
不知道叫啥完成签到,获得积分10
13秒前
15秒前
pwy完成签到,获得积分10
17秒前
mmyhn完成签到,获得积分10
17秒前
18秒前
星辰大海应助热心的皮采纳,获得10
20秒前
20秒前
椋鸟应助优雅面包采纳,获得10
21秒前
23秒前
25秒前
zzrg发布了新的文献求助10
25秒前
科研通AI5应助自然遥采纳,获得10
26秒前
穆奕完成签到 ,获得积分10
27秒前
动漫大师发布了新的文献求助50
27秒前
29秒前
热心一江完成签到,获得积分20
29秒前
29秒前
30秒前
华仔应助dolabmu采纳,获得10
30秒前
大肚肚不怕凉关注了科研通微信公众号
31秒前
芙芙完成签到 ,获得积分10
32秒前
我来学习学习完成签到,获得积分10
33秒前
乐观海云完成签到 ,获得积分10
34秒前
动漫大师发布了新的文献求助10
34秒前
热心一江发布了新的文献求助10
35秒前
完美紫发布了新的文献求助10
35秒前
00完成签到 ,获得积分10
36秒前
科研通AI5应助bbb采纳,获得30
37秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805070
求助须知:如何正确求助?哪些是违规求助? 3350197
关于积分的说明 10347558
捐赠科研通 3066017
什么是DOI,文献DOI怎么找? 1683448
邀请新用户注册赠送积分活动 809021
科研通“疑难数据库(出版商)”最低求助积分说明 765153