已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning in continuous action space for developing high dimensional potential energy models

强化学习 计算机科学 维数之咒 可扩展性 人工智能 机器学习 数据库
作者
Sukriti Manna,Troy D. Loeffler,Rohit Batra,Suvo Banik,Henry Chan,Bilvin Varughese,Kiran Sasikumar,Michael Sternberg,Tom Peterka,Mathew J. Cherukara,Stephen K. Gray,Bobby G. Sumpter,Subramanian K. R. S. Sankaranarayanan
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:13 (1) 被引量:44
标识
DOI:10.1038/s41467-021-27849-6
摘要

Abstract Reinforcement learning (RL) approaches that combine a tree search with deep learning have found remarkable success in searching exorbitantly large, albeit discrete action spaces, as in chess, Shogi and Go. Many real-world materials discovery and design applications, however, involve multi-dimensional search problems and learning domains that have continuous action spaces. Exploring high-dimensional potential energy models of materials is an example. Traditionally, these searches are time consuming (often several years for a single bulk system) and driven by human intuition and/or expertise and more recently by global/local optimization searches that have issues with convergence and/or do not scale well with the search dimensionality. Here, in a departure from discrete action and other gradient-based approaches, we introduce a RL strategy based on decision trees that incorporates modified rewards for improved exploration, efficient sampling during playouts and a “window scaling scheme" for enhanced exploitation, to enable efficient and scalable search for continuous action space problems. Using high-dimensional artificial landscapes and control RL problems, we successfully benchmark our approach against popular global optimization schemes and state of the art policy gradient methods, respectively. We demonstrate its efficacy to parameterize potential models (physics based and high-dimensional neural networks) for 54 different elemental systems across the periodic table as well as alloys. We analyze error trends across different elements in the latent space and trace their origin to elemental structural diversity and the smoothness of the element energy surface. Broadly, our RL strategy will be applicable to many other physical science problems involving search over continuous action spaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
欢喜梦凡完成签到 ,获得积分10
3秒前
4秒前
ww发布了新的文献求助10
4秒前
WangKaka发布了新的文献求助10
4秒前
阿宝发布了新的文献求助10
7秒前
从容芮应助科研通管家采纳,获得50
7秒前
从容芮应助科研通管家采纳,获得50
7秒前
hazekurt发布了新的文献求助10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
鲁欢发布了新的文献求助10
8秒前
从容芮应助科研通管家采纳,获得50
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
从容芮应助科研通管家采纳,获得50
8秒前
从容芮应助科研通管家采纳,获得50
8秒前
从容芮应助科研通管家采纳,获得50
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
从容芮应助科研通管家采纳,获得50
8秒前
桐桐应助科研通管家采纳,获得10
9秒前
从容芮应助科研通管家采纳,获得50
9秒前
从容芮应助科研通管家采纳,获得50
9秒前
从容芮应助科研通管家采纳,获得50
9秒前
从容芮应助科研通管家采纳,获得50
9秒前
浮游应助科研通管家采纳,获得10
9秒前
无尘发布了新的文献求助10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
从容芮应助科研通管家采纳,获得50
9秒前
从容芮应助科研通管家采纳,获得50
9秒前
kkpzc完成签到 ,获得积分10
11秒前
凡子惠完成签到,获得积分10
12秒前
吴彦祖发布了新的文献求助10
14秒前
闪闪的大炮完成签到,获得积分10
15秒前
卖辣条的小浣熊完成签到,获得积分10
15秒前
我是老大应助猪猪hero采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4740144
求助须知:如何正确求助?哪些是违规求助? 4091122
关于积分的说明 12655446
捐赠科研通 3800840
什么是DOI,文献DOI怎么找? 2098836
邀请新用户注册赠送积分活动 1124210
科研通“疑难数据库(出版商)”最低求助积分说明 999340