Learning in continuous action space for developing high dimensional potential energy models

强化学习 计算机科学 维数之咒 可扩展性 人工智能 机器学习 数据库
作者
Sukriti Manna,Troy D. Loeffler,Rohit Batra,Suvo Banik,Henry Chan,Bilvin Varughese,Kiran Sasikumar,Michael Sternberg,Tom Peterka,Mathew J. Cherukara,Stephen K. Gray,Bobby G. Sumpter,Subramanian K. R. S. Sankaranarayanan
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:13 (1) 被引量:44
标识
DOI:10.1038/s41467-021-27849-6
摘要

Abstract Reinforcement learning (RL) approaches that combine a tree search with deep learning have found remarkable success in searching exorbitantly large, albeit discrete action spaces, as in chess, Shogi and Go. Many real-world materials discovery and design applications, however, involve multi-dimensional search problems and learning domains that have continuous action spaces. Exploring high-dimensional potential energy models of materials is an example. Traditionally, these searches are time consuming (often several years for a single bulk system) and driven by human intuition and/or expertise and more recently by global/local optimization searches that have issues with convergence and/or do not scale well with the search dimensionality. Here, in a departure from discrete action and other gradient-based approaches, we introduce a RL strategy based on decision trees that incorporates modified rewards for improved exploration, efficient sampling during playouts and a “window scaling scheme" for enhanced exploitation, to enable efficient and scalable search for continuous action space problems. Using high-dimensional artificial landscapes and control RL problems, we successfully benchmark our approach against popular global optimization schemes and state of the art policy gradient methods, respectively. We demonstrate its efficacy to parameterize potential models (physics based and high-dimensional neural networks) for 54 different elemental systems across the periodic table as well as alloys. We analyze error trends across different elements in the latent space and trace their origin to elemental structural diversity and the smoothness of the element energy surface. Broadly, our RL strategy will be applicable to many other physical science problems involving search over continuous action spaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助cheng采纳,获得10
刚刚
搜集达人应助进步采纳,获得10
3秒前
4秒前
goooooodluck发布了新的文献求助10
4秒前
慕青应助jianhan采纳,获得10
5秒前
5秒前
7秒前
李奶奶发布了新的文献求助10
8秒前
木木完成签到,获得积分10
8秒前
10秒前
小景毕业发布了新的文献求助10
13秒前
13秒前
14秒前
pluto应助进步采纳,获得10
14秒前
韩维发布了新的文献求助10
16秒前
xxx发布了新的文献求助10
18秒前
闫晓丽发布了新的文献求助10
18秒前
19秒前
洽洽关注了科研通微信公众号
19秒前
19秒前
Ryjinisfine发布了新的文献求助20
20秒前
研友_LX66qZ发布了新的文献求助10
20秒前
可爱的函函应助ZP采纳,获得10
23秒前
北风应助毅诚菌采纳,获得10
23秒前
我是老大应助yukang采纳,获得10
23秒前
小景毕业完成签到,获得积分10
24秒前
赘婿应助闫晓丽采纳,获得10
24秒前
666发布了新的文献求助10
25秒前
27秒前
只道寻常发布了新的文献求助10
33秒前
wenfeisun发布了新的文献求助10
34秒前
文献完成签到 ,获得积分10
34秒前
洽洽完成签到,获得积分10
34秒前
在水一方应助666采纳,获得10
34秒前
34秒前
heheha发布了新的文献求助10
38秒前
Cz志生发布了新的文献求助10
38秒前
38秒前
39秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780235
求助须知:如何正确求助?哪些是违规求助? 3325533
关于积分的说明 10223422
捐赠科研通 3040695
什么是DOI,文献DOI怎么找? 1668972
邀请新用户注册赠送积分活动 798936
科研通“疑难数据库(出版商)”最低求助积分说明 758634