Electrophysiological Monitoring of Neurochemical-Based Neural Signal Transmission in a Human Brain–Spinal Cord Assembloid

神经化学 神经科学 神经干细胞 脊髓 诱导多能干细胞 神经生理学 人脑 生物神经网络 神经元 生物 干细胞 胚胎干细胞 细胞生物学 生物化学 基因
作者
Joohyung Son,Soo Jeong Park,Taehyeong Ha,Sang‐Nam Lee,Hyeon‐Yeol Cho,Jeong‐Woo Choi
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:7 (2): 409-414 被引量:22
标识
DOI:10.1021/acssensors.1c02279
摘要

Combining human brain organoids holds great potential in recapitulating the human brain's histological features and modeling neural disorders. However, current combined-brain organoid models focus on the internal interactions between different brain regions. In this study, we develop an engineered brain–spinal cord assembloid (eBSA) by coculturing cerebral organoids (COs) and motor neuron spheroids (MNSs). By connecting COs and MNSs, we generate a terminal for signal transfer from the brain to the whole body by mimicking the brain–spinal cord connection. After the formation of COs from human induced pluripotent stem cells and MNSs from human neural stem cells, MNSs are prepatterned into specific CO regions and assembled to form an eBSA. Caffeine serves as a neurochemical model to demonstrate neural signal transmission. When the MNSs in the eBSA contact the multielectrode array, the eBSA successfully shows an increased neural spiking speed on the motor neuron region by caffeine treatment, which means that neural stimulation signals transfer from the COs to MNSs. The neural stimulation effects of caffeine are tested on the MNSs only to prove the eBSA system's neural signal transmission, and there were no stimulus effects. Our results demonstrate that the eBSA system can monitor a caffeine-mediated excitatory signal as an output signal from the brain to the spinal cord. We believe that the eBSA system can be utilized as a screening platform to validate the stimulus signal transfer by neurochemicals. In addition, the accumulation of understanding of the neural signal transfer from CNS to PNS will provide better knowledge for controlling muscle actuators with the nervous system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助小不采纳,获得10
刚刚
852应助小松奈奈采纳,获得10
1秒前
1秒前
Zzz应助FFFFFFG采纳,获得10
1秒前
liulu发布了新的文献求助10
2秒前
4秒前
Danielle完成签到,获得积分10
4秒前
quaso驳回了浮游应助
5秒前
littlepuppy完成签到,获得积分10
6秒前
7秒前
上善若水完成签到 ,获得积分10
7秒前
FashionBoy应助小陈采纳,获得10
7秒前
8秒前
8秒前
wudizhuzhu233完成签到,获得积分10
8秒前
北有云烟完成签到 ,获得积分10
9秒前
10秒前
lxgz完成签到 ,获得积分10
11秒前
小蘑菇应助迅速的曼卉采纳,获得10
11秒前
12秒前
lyherok关注了科研通微信公众号
12秒前
zxd完成签到,获得积分10
13秒前
翠花发布了新的文献求助10
13秒前
筱澍完成签到,获得积分10
13秒前
玛莎机给玛莎机的求助进行了留言
13秒前
阿撕匹林发布了新的文献求助10
13秒前
程大大大教授完成签到,获得积分10
14秒前
ocelia发布了新的文献求助10
14秒前
daring发布了新的文献求助10
15秒前
meinv完成签到,获得积分10
15秒前
15秒前
SciGPT应助11122采纳,获得10
18秒前
18秒前
小不发布了新的文献求助10
21秒前
21秒前
21秒前
如初发布了新的文献求助10
21秒前
21秒前
22秒前
丘比特应助daring采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4819070
求助须知:如何正确求助?哪些是违规求助? 4128189
关于积分的说明 12775812
捐赠科研通 3867691
什么是DOI,文献DOI怎么找? 2128304
邀请新用户注册赠送积分活动 1149107
关于科研通互助平台的介绍 1044750