A Precision Efficient Method for Collapsed Building Detection in Post-Earthquake UAV Images Based on the Improved NMS Algorithm and Faster R-CNN

计算机科学 跳跃式监视 卷积神经网络 算法 交叉口(航空) 人工智能 计算机视觉 模式识别(心理学) 实时计算 工程类 航空航天工程
作者
Jiujie Ding,Jiahuan Zhang,Zongqian Zhan,Xiaofang Tang,Xin Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (3): 663-663 被引量:40
标识
DOI:10.3390/rs14030663
摘要

The results of collapsed building detection act as an important reference for damage assessment after an earthquake, which is crucial for governments in order to efficiently determine the affected area and execute emergency rescue. For this task, unmanned aerial vehicle (UAV) images are often used as the data sources due to the advantages of high flexibility regarding data acquisition time and flying requirements and high resolution. However, collapsed buildings are typically distributed in both connected and independent pieces and with arbitrary shapes, and these are generally more obvious in the UAV images with high resolution; therefore, the corresponding detection is restricted by using conventional convolutional neural networks (CNN) and the detection results are difficult to evaluate. In this work, based on faster region-based convolutional neural network (Faster R-CNN), deformable convolution was used to improve the adaptability to the arbitrarily shaped collapsed buildings. In addition, inspired by the idea of pixelwise semantic segmentation, in contrast to the intersection over union (IoU), a new method which estimates the intersected proportion of objects (IPO) is proposed to describe the degree of the intersection of bounding boxes, leading to two improvements: first, the traditional non-maximum suppression (NMS) algorithm is improved by integration with the IPO to effectively suppress the redundant bounding boxes; second, the IPO is utilized as a new indicator to determine positive and negative bounding boxes, and is introduced as a new strategy for precision and recall estimation, which can be considered a more reasonable measurement of the degree of similarity between the detected bounding boxes and ground truth bounding boxes. Experiments show that compared with other models, our work can obtain better precision and recall for detecting collapsed buildings for which an F1 score of 0.787 was achieved, and the evaluation results from the suggested IPO are qualitatively closer to the ground truth. In conclusion, the improved NMS with the IPO and Faster R-CNN in this paper is feasible and efficient for the detection of collapsed buildings in UAV images, and the suggested IPO strategy is more suitable for the corresponding detection result’s evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑半莲发布了新的文献求助10
刚刚
1秒前
4秒前
阳光保温杯完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
abccd123发布了新的文献求助10
6秒前
Damon完成签到 ,获得积分10
7秒前
燕荣完成签到 ,获得积分10
7秒前
鹿过发布了新的文献求助10
10秒前
唐泽雪穗完成签到,获得积分10
15秒前
xiaofenzi完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助20
23秒前
田田完成签到 ,获得积分10
24秒前
天天开心完成签到 ,获得积分10
26秒前
沉静的清涟完成签到,获得积分10
35秒前
李健应助爱笑半莲采纳,获得80
37秒前
40秒前
量子星尘发布了新的文献求助10
46秒前
48秒前
57秒前
Ttimer完成签到,获得积分10
1分钟前
蒸馏水完成签到,获得积分10
1分钟前
外向的芒果完成签到 ,获得积分10
1分钟前
流氓恐龙完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助150
1分钟前
Jasper应助科研通管家采纳,获得150
1分钟前
田様应助科研通管家采纳,获得20
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
1分钟前
在水一方应助剑K采纳,获得10
1分钟前
自然代亦完成签到 ,获得积分10
1分钟前
1分钟前
剑K发布了新的文献求助10
1分钟前
qianci2009完成签到,获得积分0
1分钟前
nicholas完成签到,获得积分10
2分钟前
成就的冬瓜完成签到 ,获得积分10
2分钟前
听话的采蓝完成签到 ,获得积分10
2分钟前
27完成签到 ,获得积分10
2分钟前
licheng完成签到,获得积分10
2分钟前
柴敏完成签到,获得积分20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4852155
求助须知:如何正确求助?哪些是违规求助? 4150456
关于积分的说明 12857082
捐赠科研通 3898693
什么是DOI,文献DOI怎么找? 2142559
邀请新用户注册赠送积分活动 1162325
关于科研通互助平台的介绍 1062725