Disentangled Representation Learning for Recommendation

计算机科学 可解释性 范畴变量 稳健性(进化) 特征学习 代表(政治) 推荐系统 编码器 人工智能 维数(图论) 机器学习 语义学(计算机科学) 数学 政治 基因 操作系统 生物化学 化学 程序设计语言 法学 纯数学 政治学
作者
Xin Wang,Hong Chen,Yuwei Zhou,Jianxin Ma,Wenwu Zhu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (1): 408-424 被引量:54
标识
DOI:10.1109/tpami.2022.3153112
摘要

There exist complex interactions among a large number of latent factors behind the decision making processes of different individuals, which drive the various user behavior patterns in recommender systems. These factors hidden in those diverse behaviors demonstrate highly entangled patterns, covering from high-level user intentions to low-level individual preferences. Uncovering the disentanglement of these latent factors can benefit in enhanced robustness, interpretability, and controllability during representation learning for recommendation. However, the large degree of entanglement within latent factors poses great challenges for learning representations that disentangle them, and remains largely unexplored in literature. In this paper, we present the SEMantic MACRo-mIcro Disentangled Variational Auto-Encoder (SEM-MacridVAE) model for learning disentangled representations from user behaviors, taking item semantic information into account. Our SEM-MacridVAE model achieves macro disentanglement by inferring the high-level concepts associated with user intentions (e.g., to buy a pair of shoes or a laptop) through a prototype routing mechanism, as well as capturing the individual preferences with respect to different concepts separately. The micro disentanglement is guaranteed through a micro-disentanglement regularizer stemming from an information-theoretic interpretation of VAEs, which forces each dimension of the representations to independently reflect an isolated low-level factor (e.g., the size or the color of a shirt). The semantic information including visual and categorical signals extracted from candidate items is utilized to further boost the recommendation performance of the proposed SEM-MacridVAE model. Empirical experiments demonstrate that our proposed approach is able to achieve significant improvement over the state-of-the-art baselines. We also show that the learned representations are interpretable and controllable, capable of potentially leading to a new paradigm for recommendation where users have fine-grained control over some target aspects of the recommendation candidates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
浅帅发布了新的文献求助10
1秒前
77发布了新的文献求助10
2秒前
2秒前
2秒前
灵巧的馒头完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
河畔发布了新的文献求助10
5秒前
淡定紫槐发布了新的文献求助10
5秒前
6秒前
美满的绮兰完成签到,获得积分10
6秒前
wangwangwang完成签到,获得积分10
6秒前
7秒前
成长中完成签到 ,获得积分10
8秒前
坚强的草履虫完成签到,获得积分10
9秒前
田様应助aiyawy采纳,获得20
9秒前
9秒前
9秒前
领导范儿应助离离采纳,获得10
11秒前
11秒前
12秒前
12秒前
李健的粉丝团团长应助chai采纳,获得10
12秒前
科研通AI5应助橙子采纳,获得10
13秒前
xuxingjie完成签到,获得积分10
15秒前
bk发布了新的文献求助10
15秒前
愉快猫咪发布了新的文献求助10
15秒前
Sdpol发布了新的文献求助40
15秒前
UserH发布了新的文献求助10
16秒前
俊秀的电灯胆完成签到,获得积分10
16秒前
17秒前
17秒前
瘦瘦慕凝发布了新的文献求助10
17秒前
loong发布了新的文献求助10
17秒前
18秒前
河畔完成签到,获得积分20
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4590887
求助须知:如何正确求助?哪些是违规求助? 4005393
关于积分的说明 12401290
捐赠科研通 3682607
什么是DOI,文献DOI怎么找? 2029751
邀请新用户注册赠送积分活动 1063215
科研通“疑难数据库(出版商)”最低求助积分说明 948727