Proteomic Discovery of Plasma Protein Biomarkers and Development of Models Predicting Prognosis of High-Grade Serous Ovarian Carcinoma

危险系数 卵巢癌 生物标志物 浆液性液体 肿瘤科 内科学 医学 卵巢癌 置信区间 蛋白质组学 接收机工作特性 癌症 生物 生物化学 基因
作者
Se Ik Kim,Suhyun Hwangbo,Kisoon Dan,Hee Seung Kim,Hyun Hoon Chung,Jae Weon Kim,Noh Hyun Park,Yong Sang Song,Dohyun Han,Maria Lee
出处
期刊:Molecular & Cellular Proteomics [Elsevier]
卷期号:22 (3): 100502-100502 被引量:6
标识
DOI:10.1016/j.mcpro.2023.100502
摘要

Ovarian cancer is one of the most lethal female cancers. For accurate prognosis prediction, this study aimed to investigate novel, blood-based prognostic biomarkers for high-grade serous ovarian carcinoma (HGSOC) using mass spectrometry–based proteomics methods. We conducted label-free liquid chromatography–tandem mass spectrometry using frozen plasma samples obtained from patients with newly diagnosed HGSOC (n = 20). Based on progression-free survival (PFS), the samples were divided into two groups: good (PFS ≥18 months) and poor prognosis groups (PFS <18 months). Proteomic profiles were compared between the two groups. Referring to proteomics data that we previously obtained using frozen cancer tissues from chemotherapy-naïve patients with HGSOC, overlapping protein biomarkers were selected as candidate biomarkers. Biomarkers were validated using an independent set of HGSOC plasma samples (n = 202) via enzyme-linked immunosorbent assay (ELISA). To construct models predicting the 18-month PFS rate, we performed stepwise selection based on the area under the receiver operating characteristic curve (AUC) with 5-fold cross-validation. Analysis of differentially expressed proteins in plasma samples revealed that 35 and 61 proteins were upregulated in the good and poor prognosis groups, respectively. Through hierarchical clustering and bioinformatic analyses, GSN, VCAN, SND1, SIGLEC14, CD163, and PRMT1 were selected as candidate biomarkers and were subjected to ELISA. In multivariate analysis, plasma GSN was identified as an independent poor prognostic biomarker for PFS (adjusted hazard ratio, 1.556; 95% confidence interval, 1.073–2.256; p = 0.020). By combining clinical factors and ELISA results, we constructed several models to predict the 18-month PFS rate. A model consisting of four predictors (FIGO stage, residual tumor after surgery, and plasma levels of GSN and VCAN) showed the best predictive performance (mean validated AUC, 0.779). The newly developed model was converted to a nomogram for clinical use. Our study results provided insights into protein biomarkers, which might offer clues for developing therapeutic targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ying完成签到,获得积分10
2秒前
小吕完成签到,获得积分10
2秒前
2秒前
慕青应助123采纳,获得10
2秒前
斯文败类应助HuangJiajia_FZU采纳,获得10
2秒前
puff完成签到,获得积分10
3秒前
xo80完成签到 ,获得积分10
3秒前
3秒前
tyy完成签到,获得积分10
3秒前
cc完成签到,获得积分10
4秒前
倪好完成签到,获得积分10
4秒前
4秒前
4秒前
ldh应助奇思妙想采纳,获得10
4秒前
bkagyin应助Jane采纳,获得10
4秒前
fyj发布了新的文献求助10
4秒前
ldh应助hhy采纳,获得10
5秒前
liu完成签到,获得积分10
5秒前
5秒前
寒冷班给寒冷班的求助进行了留言
5秒前
研友_VZG7GZ应助单纯的香寒采纳,获得10
5秒前
大苏打发布了新的文献求助10
6秒前
kxxx发布了新的文献求助10
6秒前
holder完成签到,获得积分10
6秒前
852应助可靠的映秋采纳,获得10
7秒前
简单发布了新的文献求助10
7秒前
丘比特应助X_XI采纳,获得10
7秒前
tingtingzhang发布了新的文献求助10
7秒前
酷波er应助onlyan采纳,获得10
8秒前
8秒前
JamesPei应助侯荣杰采纳,获得10
8秒前
椰啵发布了新的文献求助10
8秒前
英吉利25发布了新的文献求助10
9秒前
9秒前
小虫发布了新的文献求助10
9秒前
xiaolei001应助犹豫傻姑采纳,获得20
9秒前
chendd123发布了新的文献求助10
9秒前
hanwang发布了新的文献求助10
9秒前
旺仔发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506110
求助须知:如何正确求助?哪些是违规求助? 4601589
关于积分的说明 14477878
捐赠科研通 4535577
什么是DOI,文献DOI怎么找? 2485508
邀请新用户注册赠送积分活动 1468423
关于科研通互助平台的介绍 1440915