Research on local path planning of unmanned vehicles based on improved driving risk field

计算机科学 MATLAB语言 运动规划 领域(数学) 弹道 势场 模拟 人工智能 机器人 数学 天文 地球物理学 操作系统 物理 地质学 纯数学
作者
Pan Liu,Yongqiang Chang,Jianping Gao,Guoguo Du,SU Zhi-jun,Minghui Liu,Wenju Liu
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-78025-x
摘要

With the rapid development of the field of unmanned vehicles, motion planning based on field theory has become a research hotspot. A driving risk field is an effective means to evaluate driving safety in complex environments, and this method is frequently used in autonomous vehicle motion planning. However, existing risk field models are not sufficiently accurate for describing driving risks, often disregarding the size and driving direction restrictions of vehicles, amongst other aspects. Considering the aforementioned problems, this research improves and establishes a new risk field model, including a motor vehicle risk field, a road risk field and a pedestrian risk field. Simultaneously, it proposes a solution to the local minimum point problem caused by different scenarios and verifies the simulation in MATLAB. Finally, the Prescan and MATLAB/Simulink co-simulation platform is used to compare the traditional and improved field theory algorithms. Results show that the trajectory generated by the improved field theory algorithm is smoother, and the fluctuation amplitude and number of parameters, such as heading angle, yaw rate and roll angle during driving, are significantly reduced. These outcomes improve the stability of driving whilst smoothly reaching the target point, demonstrating high application potential for the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
JamesPei应助汉化采纳,获得10
4秒前
cjg发布了新的文献求助10
4秒前
美罗培南完成签到,获得积分0
5秒前
菲比完成签到,获得积分10
7秒前
9秒前
lan发布了新的文献求助30
10秒前
隐形曼青应助TUTU采纳,获得10
16秒前
16秒前
17秒前
谨慎从凝发布了新的文献求助10
23秒前
兮沐发布了新的文献求助10
24秒前
26秒前
张可完成签到 ,获得积分10
27秒前
又村完成签到 ,获得积分10
28秒前
打打应助lan采纳,获得10
30秒前
留胡子的迎梦完成签到 ,获得积分10
31秒前
31秒前
斯文败类应助lan采纳,获得10
40秒前
41秒前
johirol完成签到,获得积分20
41秒前
Hanayu完成签到 ,获得积分0
44秒前
zgl完成签到,获得积分10
46秒前
46秒前
49秒前
daisy完成签到 ,获得积分10
52秒前
xiancdc完成签到,获得积分10
53秒前
ww完成签到,获得积分10
59秒前
哈哈_333发布了新的文献求助10
59秒前
麟书夷完成签到 ,获得积分10
59秒前
小哀完成签到 ,获得积分10
1分钟前
1分钟前
SciGPT应助Yqx采纳,获得10
1分钟前
852应助cjg采纳,获得10
1分钟前
英俊的铭应助自由的咸鱼采纳,获得10
1分钟前
NexusExplorer应助ldmr采纳,获得30
1分钟前
深情安青应助biowzf采纳,获得10
1分钟前
lan发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
Berlitz Picture Dictionary Arabic 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5864875
求助须知:如何正确求助?哪些是违规求助? 6405180
关于积分的说明 15652182
捐赠科研通 4979226
什么是DOI,文献DOI怎么找? 2685779
邀请新用户注册赠送积分活动 1628785
关于科研通互助平台的介绍 1586474