Generative AI for Healthcare: Applications, Challenges, and Ethical Considerations

保护 医疗保健 计算机科学 大数据 数据科学 生成语法 过程(计算) 精密医学 人工智能 知识管理 医学 数据挖掘 政治学 操作系统 病理 护理部 法学
作者
IJSREM Journal
出处
期刊:Indian Scientific Journal Of Research In Engineering And Management [Indospace Publications]
卷期号:08 (12): 1-6 被引量:1
标识
DOI:10.55041/ijsrem39600
摘要

Generative Artificial Intelligence (AI) is rapidly transforming the healthcare sector, offering novel approaches to medical imaging, drug discovery, personalized medicine, and data privacy through the generation of synthetic datasets. This paper explores the applications, challenges, and ethical considerations surrounding the use of generative AI in healthcare. Key applications of this technology include enhancing diagnostic capabilities by generating high-quality medical images, accelerating the drug discovery process by simulating chemical compounds, and tailoring treatment plans through personalized medicine. Generative AI's ability to create synthetic patient data also provides a promising solution for safeguarding patient privacy while advancing medical research. However, the integration of generative AI into healthcare is met with several challenges. These include data quality issues, which can compromise the accuracy and reliability of AI-generated outputs, and the black-box nature of many AI models, making it difficult for healthcare professionals to fully understand or trust the systems. Moreover, the technical limitations, such as high computational costs and the difficulty of integrating AI with existing healthcare infrastructure, pose additional barriers to widespread adoption. The ethical considerations of generative AI in healthcare are equally significant. Concerns over patient privacy and data security remain central, particularly when synthetic data is generated and used for research purposes. Furthermore, the potential for algorithmic bias to influence healthcare outcomes raises questions about fairness and equity in AI-driven decisions. Establishing clear lines of accountability and ensuring that AI systems comply with existing regulatory frameworks are essential for building trust and safeguarding patient well-being. Looking forward, the paper highlights the importance of developing explainable AI systems that offer greater transparency and integration with human decision-making processes. Future advancements in personalized medicine and drug discovery will rely on cross-disciplinary collaboration between AI researchers, healthcare professionals, and policymakers. Ultimately, the paper emphasizes that while generative AI holds tremendous potential for revolutionizing healthcare, its success will depend on addressing both the technical and ethical challenges it presents. Keywords: Generative Artificial Intelligence, Medical Imaging, Healthcare, Personalized Medicine, Synthetic Datasets, Diagnostic Capabilities, Patient Privacy, Explainable AI, Algorithmic Bias

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wei完成签到 ,获得积分10
刚刚
老福贵儿应助双夏采纳,获得30
1秒前
2秒前
Susanx发布了新的文献求助10
3秒前
3秒前
4秒前
bzg完成签到,获得积分10
4秒前
沐言完成签到,获得积分10
5秒前
dr_zhangshiyu发布了新的文献求助10
7秒前
奋斗灵珊完成签到 ,获得积分10
7秒前
8秒前
8秒前
俏皮不可完成签到,获得积分10
9秒前
snow完成签到 ,获得积分10
9秒前
10秒前
12秒前
Candy完成签到,获得积分10
12秒前
nono发布了新的文献求助10
13秒前
小电驴完成签到,获得积分10
14秒前
15秒前
15秒前
俏皮不可关注了科研通微信公众号
15秒前
16秒前
16秒前
doudou完成签到,获得积分10
16秒前
17秒前
美丽心情完成签到,获得积分10
18秒前
yu发布了新的文献求助10
19秒前
21秒前
ptalala完成签到,获得积分10
21秒前
wanglu发布了新的文献求助10
22秒前
dr_zhangshiyu完成签到,获得积分10
23秒前
23秒前
23秒前
Twonej举报甜美的月饼求助涉嫌违规
24秒前
24秒前
24秒前
FF发布了新的文献求助30
25秒前
soapffz完成签到,获得积分0
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638365
求助须知:如何正确求助?哪些是违规求助? 4745581
关于积分的说明 15002409
捐赠科研通 4796512
什么是DOI,文献DOI怎么找? 2562691
邀请新用户注册赠送积分活动 1522009
关于科研通互助平台的介绍 1481864