亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LHR-RFL: Linear Hybrid-Reward based Reinforced Focal Learning for Automatic Radiology Report Generation

计算机科学 医学影像学 人工智能 医学物理学 计算机视觉 放射科 医学
作者
Xiulong Yi,You Fu,Jianzhi Yu,Ruiqing Liu,Hao Zhang,Rong Hua
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:4
标识
DOI:10.1109/tmi.2024.3507073
摘要

Radiology report generation that aims to accurately describe medical findings for given images, is pivotal in contemporary computer-aided diagnosis. Recently, despite considerable progress, current radiology report generation models still struggled to achieve consistent quality across difficult and easy samples, which dramatically impacts their clinical value. To solve this problem, we explore the difficult samples mining in radiology report generation and propose the Linear Hybrid-Reward based Reinforced Focal Learning (LHR-RFL) to effectively guide the model to allocate more attention towards some difficult samples, thereby enhancing its overall performance in both general and intricate scenarios. In implementation, we first propose the Linear Hybrid-Reward (LHR) module to better quantify the learning difficulty, which employs a linear weighting scheme that assigns varying weights to three representative Natural Language Generation (NLG) evaluation metrics. Then, we propose the Reinforced Focal Learning (RFL) to adaptively adjust the contributions of difficult samples during training, thereby augmenting their impact on model optimization. The experimental results demonstrate that our proposed LHR-RFL improves the performance of the base model across all NLG evaluation metrics, achieving an average performance improvement of 20.9% and 13.2% on IU X-ray and MIMIC-CXR datasets, respectively. Further analysis also proves that our LHR-RFL can dramatically improve the quality of reports for difficult samples. The source code will be available at https://github.com/SKD-HPC/LHR-RFL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助lezbj99采纳,获得10
5秒前
19秒前
satsuki发布了新的文献求助10
24秒前
31秒前
1分钟前
1分钟前
Kz发布了新的文献求助10
1分钟前
科研通AI6应助Kz采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
2分钟前
张智发布了新的文献求助10
2分钟前
浮游应助satsuki采纳,获得10
2分钟前
张智完成签到,获得积分20
2分钟前
充电宝应助Karol25采纳,获得10
2分钟前
2分钟前
2分钟前
852应助韩立采纳,获得10
3分钟前
3分钟前
Marciu33发布了新的文献求助10
3分钟前
3分钟前
3分钟前
韩立发布了新的文献求助10
3分钟前
Alan弟弟发布了新的文献求助10
3分钟前
3分钟前
3分钟前
lezbj99发布了新的文献求助10
3分钟前
3分钟前
Affenyi发布了新的文献求助10
3分钟前
科研通AI5应助Marciu33采纳,获得10
3分钟前
Karol25发布了新的文献求助10
3分钟前
lezbj99完成签到,获得积分10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
3分钟前
wujiwuhui完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
共享精神应助satsuki采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077871
求助须知:如何正确求助?哪些是违规求助? 4296856
关于积分的说明 13387437
捐赠科研通 4119374
什么是DOI,文献DOI怎么找? 2255953
邀请新用户注册赠送积分活动 1260260
关于科研通互助平台的介绍 1193672