亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Top-DTI: Integrating Topological Deep Learning and Large Language Models for Drug Target Interaction Prediction

计算机科学 人工智能 深度学习
作者
Muhammed Talo,Serdar Bozdag
标识
DOI:10.1101/2025.02.07.637146
摘要

Motivation The accurate prediction of drug–target interactions (DTI) is a crucial step in drug discovery, providing a foundation for identifying novel therapeutics. Traditional drug development is both costly and time-consuming, often spanning over a decade. Computational approaches help narrow the pool of compound candidates, offering significant starting points for experimental validation. In this study, we propose Top-DTI framework for predicting DTI by integrating topological data analysis (TDA) with large language models (LLMs). Top-DTI leverages persistent homology to extract topological features from protein contact maps and drug molecular images. Simultaneously, protein and drug LLMs generate semantically rich embeddings that capture sequential and contextual information from protein sequences and drug SMILES strings. By combining these complementary features, Top-DTI enhances predictive performance and robustness. Results Experimental results on the public BioSNAP and Human DTI benchmark datasets demonstrate that the proposed Top-DTI model outperforms state-of-the-art approaches across multiple evaluation metrics, including AUROC, AUPRC, sensitivity, and specificity. Furthermore, the Top-DTI model achieves superior performance in the challenging cold-split scenario, where the test and validation sets contain drugs or targets absent from the training set. This setting simulates real-world scenarios and highlights the robustness of the model. Notably, incorporating topological features alongside LLM embeddings significantly improves predictive performance, underscoring the value of integrating structural and sequence-based representations. Availability The data and source code of Top-DTI is available at https://github.com/bozdaglab/Top_DTI under Creative Commons Attribution Non Commercial 4.0 International Public License.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaa发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
13秒前
洪焕良发布了新的文献求助10
18秒前
25秒前
25秒前
李爱国应助洪焕良采纳,获得10
28秒前
量子星尘发布了新的文献求助10
40秒前
赘婿应助aaa采纳,获得10
42秒前
53秒前
洪焕良发布了新的文献求助10
57秒前
Zhang完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
LiuShenglan完成签到,获得积分10
1分钟前
1分钟前
aaa发布了新的文献求助10
1分钟前
好奇的书蛋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
佛系完成签到 ,获得积分10
1分钟前
不良帅完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
矜天完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
fishway发布了新的文献求助10
2分钟前
赘婿应助自信寻真采纳,获得10
2分钟前
2分钟前
思源应助aaa采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
xmf发布了新的文献求助10
2分钟前
一辰不染发布了新的文献求助10
2分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863950
求助须知:如何正确求助?哪些是违规求助? 3406217
关于积分的说明 10648815
捐赠科研通 3130124
什么是DOI,文献DOI怎么找? 1726230
邀请新用户注册赠送积分活动 831615
科研通“疑难数据库(出版商)”最低求助积分说明 779958