Algal biomass mapping of eutrophic lakes using a machine learning approach with MODIS images

富营养化 环境科学 平均绝对百分比误差 支持向量机 生物量(生态学) 水质 随机森林 水华 偏最小二乘回归 中分辨率成像光谱仪 算法 遥感 均方误差 数学 计算机科学 统计 卫星 浮游植物 机器学习 生态学 工程类 地理 生物 营养物 航空航天工程
作者
Lai Lai,Yuchao Zhang,Zhen Cao,Zhaomin Liu,Qiduo Yang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:880: 163357-163357 被引量:18
标识
DOI:10.1016/j.scitotenv.2023.163357
摘要

Algal blooms are a widespread issue in eutrophic lakes. Compared with the satellite-derived surface algal bloom area and chlorophyll-a (Chla) concentration, algae biomass is a more stable way to reflect water quality. Although satellite data have been adopted to observe the water column integrated algal biomass, the previous methods mostly are empirical algorithms, which are not stable enough for widespread use. This paper proposed a machine learning algorithm based on Moderate Resolution Imaging Spectrometer (MODIS) data to estimate the algal biomass, which was successfully applied to a eutrophic lake in China, Lake Taihu. This algorithm was developed by linking Rayleigh-corrected reflectance to in situ algae biomass data in Lake Taihu (n = 140), and the different mainstream machine learning (ML) methods were compared and validated. The partial least squares regression (PLSR) (R2 = 0.67, mean absolute percentage error (MAPE) = 38.88 %) and support vector machines (SVM) (R2 = 0.46, MAPE = 52.02 %) performed poor satisfactory. In contrast, random forest (RF) and extremely gradient boosting tree (XGBoost) algorithms had higher accuracy (RF: R2 = 0.85, MAPE = 22.68 %; XGBoost: R2 = 0.83, MAPE = 24.06 %), demonstrating greater application potential in algal biomass estimation. Field biomass data were further used to estimate the RF algorithm, which showed acceptable precision (R2 = 0.86, MAPE < 7 mg Chla). Subsequently, sensitivity analysis showed that the RF algorithm was not sensitive to high suspension and thickness of aerosols (rate of change <2 %), and inter-day and consecutive days verification showed stability (rate of change <5 %). The algorithm was also extended to Lake Chaohu (R2 = 0.93, MAPE = 18.42 %), demonstrating its potential in other eutrophic lakes. This study for algae biomass estimation provides technical means with higher accuracy and greater universality for the management of eutrophic lakes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠的访冬完成签到,获得积分10
刚刚
1秒前
ZZ发布了新的文献求助20
2秒前
2秒前
000发布了新的文献求助10
3秒前
陈哈哈完成签到,获得积分10
3秒前
赘婿应助zyy采纳,获得10
4秒前
Afei发布了新的文献求助10
4秒前
心平气和完成签到,获得积分10
4秒前
风花雪月发布了新的文献求助10
5秒前
5秒前
所所应助Linkingrains采纳,获得10
6秒前
6秒前
bkagyin应助耿肖肖采纳,获得10
6秒前
英俊的铭应助雪雪雪碧采纳,获得10
7秒前
Barry发布了新的文献求助50
7秒前
rapa发布了新的文献求助10
8秒前
seele完成签到,获得积分10
8秒前
8秒前
666完成签到,获得积分10
8秒前
淡定小翠完成签到,获得积分10
8秒前
TJU-芳芳完成签到,获得积分20
9秒前
CipherSage应助哈哈哈采纳,获得10
9秒前
情怀应助小垃圾采纳,获得10
9秒前
yuan完成签到,获得积分10
10秒前
兰静发布了新的文献求助10
10秒前
脑洞疼应助源圈圈采纳,获得10
11秒前
11秒前
风花雪月完成签到,获得积分10
11秒前
嗯哼完成签到,获得积分10
11秒前
666发布了新的文献求助10
11秒前
dachengzi完成签到,获得积分10
11秒前
加速度完成签到 ,获得积分10
11秒前
12秒前
12秒前
木头马尾应助失眠双双采纳,获得10
13秒前
peng发布了新的文献求助10
13秒前
852应助yjf采纳,获得10
13秒前
test完成签到,获得积分10
14秒前
yuan发布了新的文献求助10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817748
求助须知:如何正确求助?哪些是违规求助? 3360977
关于积分的说明 10410617
捐赠科研通 3079104
什么是DOI,文献DOI怎么找? 1690986
邀请新用户注册赠送积分活动 814289
科研通“疑难数据库(出版商)”最低求助积分说明 768068