清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Designed Nanomaterials for Electrocatalytic Organic Hydrogenation Using Water as the Hydrogen Source

催化作用 化学 电化学 电解水 纳米材料 电解 纳米技术 组合化学 材料科学 有机化学 电极 电解质 物理化学
作者
Cuibo Liu,Yongmeng Wu,Bo‐Hang Zhao,Bin Zhang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (13): 1872-1883 被引量:86
标识
DOI:10.1021/acs.accounts.3c00192
摘要

ConspectusThe hydrogenation reaction is one of the most frequently used transformations in organic synthesis. Electrocatalytic hydrogenation by using water (H2O) as the hydrogen source offers an efficient and sustainable approach to synthesize hydrogenated products under ambient conditions. Such a technique can avoid the use of high-pressure and flammable hydrogen gas or other toxic/expensive hydrogen donors, which usually cause environmental, safety, and cost concerns. Interestingly, utilizing easily available heavy water (D2O) for deuterated syntheses is also attractive due to the widespread applications of deuterated molecules in organic synthesis and the pharmaceutical industry. Despite impressive achievements, electrode selection mainly relies on trial-and-error modes, and how electrodes dictate reaction outcomes remains elusive. Therefore, the rational design of nanostructured electrodes for driving the electrocatalytic hydrogenation of a series of organics via H2O electrolysis is developed.In this Account, we review recent advances in the electrocatalytic hydrogenation of different types of organic functional groups, including C≡C, C≡N, C═C, C═O, and C-Br/I bonds, -NO2, and N-heterocycles, with H2O over nanostructured cathodes. First, the general reaction steps (reactant/intermediate adsorption, active atomic hydrogen (H*) formation, surface hydrogenation reaction, product desorption) are analyzed, and key factors are proposed to optimize hydrogenation performance (e.g., selectivity, activity, Faradaic efficiency (FE), reaction rate, and productivity) and inhibit side reactions. Then, ex situ and in situ spectroscopic tools to study key intermediates and interpret mechanisms are introduced. Third, based on the knowledge of key reaction steps and mechanisms, we introduce catalyst design principles in detail on how to optimize the adoption of reactants and key intermediates, promote the formation of H* from water electrolysis, inhibit hydrogen evolution and side reactions, and improve the selectivity, reaction rate, FEs, and space-time productivity of products. We then introduce some typical examples. (i) P- and S-modified Pd can decrease C═C adsorption and promote H* formation, enabling semihydrogenation of alkynes with high selectivity and FEs at lower potentials. Then, creating high-curvature nanotips to concentrate the substrates further speeds up the hydrogenation process. (ii) By introducing low-coordination sites into Fe and combining low-coordination sites and surface fluorine to modify Co to optimize the adsorption of intermediates and facilitate H* formation, hydrogenation of nitriles and N-heterocycles with high activity and selectivity is obtained. (iii) By forming isolated Pd sites to induce a specific σ-alkynyl adsorption of alkynes and steering S vacancies of Co3S4-x to preferentially adsorb -NO2, hydrogenation of easily reduced group-decorated alkynes and nitroarenes with high chemoselectivity is realized. (iv) For gas reactant participated reactions, by designing hydrophobic gas diffusion layer-supported ultrasmall Cu nanoparticles to enhance mass transfer, improve H2O activation, inhibit H2 formation, and decrease ethylene adsorption, ampere-level ethylene production with a 97.7% FE is accomplished. Finally, we provide an outlook on the current challenges and promising opportunities in this area. We believe that the electrode selection principles summarized here provide a paradigm for designing highly active and selective nanomaterials to achieve electrocatalytic hydrogenation and other organic transformations with fascinating performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gydl完成签到,获得积分10
4秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Bin_Liu发布了新的文献求助10
15秒前
Lillianzhu1完成签到,获得积分10
28秒前
银鱼在游完成签到,获得积分10
44秒前
51秒前
1分钟前
1分钟前
笑点低的火龙果完成签到,获得积分20
1分钟前
1分钟前
可可完成签到,获得积分20
1分钟前
陈开发布了新的文献求助10
1分钟前
阿俊完成签到 ,获得积分10
1分钟前
可可发布了新的文献求助10
1分钟前
科研通AI2S应助Bin_Liu采纳,获得10
1分钟前
正直的山雁完成签到,获得积分10
2分钟前
三千完成签到,获得积分10
2分钟前
陈开完成签到,获得积分10
2分钟前
桦奕兮完成签到 ,获得积分10
2分钟前
张智完成签到,获得积分10
3分钟前
无悔完成签到 ,获得积分10
3分钟前
xiawanren00完成签到,获得积分10
3分钟前
dadazhou完成签到,获得积分10
4分钟前
落叶捎来讯息完成签到 ,获得积分10
4分钟前
彦子完成签到 ,获得积分10
4分钟前
踏雪完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
感动初蓝完成签到 ,获得积分10
5分钟前
hangjias完成签到 ,获得积分10
6分钟前
坚强的铅笔完成签到 ,获得积分10
6分钟前
Bond完成签到 ,获得积分10
7分钟前
LiangRen完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
Su发布了新的文献求助10
7分钟前
12305014077完成签到 ,获得积分10
7分钟前
ys完成签到 ,获得积分10
8分钟前
奋斗的小研完成签到,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651168
求助须知:如何正确求助?哪些是违规求助? 4783631
关于积分的说明 15053223
捐赠科研通 4809854
什么是DOI,文献DOI怎么找? 2572736
邀请新用户注册赠送积分活动 1528695
关于科研通互助平台的介绍 1487688