Designed Nanomaterials for Electrocatalytic Organic Hydrogenation Using Water as the Hydrogen Source

催化作用 化学 电化学 电解水 纳米材料 电解 纳米技术 组合化学 材料科学 有机化学 电极 电解质 物理化学
作者
Cuibo Liu,Yongmeng Wu,Bohang Zhao,Bin Zhang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (13): 1872-1883 被引量:10
标识
DOI:10.1021/acs.accounts.3c00192
摘要

ConspectusThe hydrogenation reaction is one of the most frequently used transformations in organic synthesis. Electrocatalytic hydrogenation by using water (H2O) as the hydrogen source offers an efficient and sustainable approach to synthesize hydrogenated products under ambient conditions. Such a technique can avoid the use of high-pressure and flammable hydrogen gas or other toxic/expensive hydrogen donors, which usually cause environmental, safety, and cost concerns. Interestingly, utilizing easily available heavy water (D2O) for deuterated syntheses is also attractive due to the widespread applications of deuterated molecules in organic synthesis and the pharmaceutical industry. Despite impressive achievements, electrode selection mainly relies on trial-and-error modes, and how electrodes dictate reaction outcomes remains elusive. Therefore, the rational design of nanostructured electrodes for driving the electrocatalytic hydrogenation of a series of organics via H2O electrolysis is developed.In this Account, we review recent advances in the electrocatalytic hydrogenation of different types of organic functional groups, including C≡C, C≡N, C═C, C═O, and C-Br/I bonds, -NO2, and N-heterocycles, with H2O over nanostructured cathodes. First, the general reaction steps (reactant/intermediate adsorption, active atomic hydrogen (H*) formation, surface hydrogenation reaction, product desorption) are analyzed, and key factors are proposed to optimize hydrogenation performance (e.g., selectivity, activity, Faradaic efficiency (FE), reaction rate, and productivity) and inhibit side reactions. Then, ex situ and in situ spectroscopic tools to study key intermediates and interpret mechanisms are introduced. Third, based on the knowledge of key reaction steps and mechanisms, we introduce catalyst design principles in detail on how to optimize the adoption of reactants and key intermediates, promote the formation of H* from water electrolysis, inhibit hydrogen evolution and side reactions, and improve the selectivity, reaction rate, FEs, and space-time productivity of products. We then introduce some typical examples. (i) P- and S-modified Pd can decrease C═C adsorption and promote H* formation, enabling semihydrogenation of alkynes with high selectivity and FEs at lower potentials. Then, creating high-curvature nanotips to concentrate the substrates further speeds up the hydrogenation process. (ii) By introducing low-coordination sites into Fe and combining low-coordination sites and surface fluorine to modify Co to optimize the adsorption of intermediates and facilitate H* formation, hydrogenation of nitriles and N-heterocycles with high activity and selectivity is obtained. (iii) By forming isolated Pd sites to induce a specific σ-alkynyl adsorption of alkynes and steering S vacancies of Co3S4-x to preferentially adsorb -NO2, hydrogenation of easily reduced group-decorated alkynes and nitroarenes with high chemoselectivity is realized. (iv) For gas reactant participated reactions, by designing hydrophobic gas diffusion layer-supported ultrasmall Cu nanoparticles to enhance mass transfer, improve H2O activation, inhibit H2 formation, and decrease ethylene adsorption, ampere-level ethylene production with a 97.7% FE is accomplished. Finally, we provide an outlook on the current challenges and promising opportunities in this area. We believe that the electrode selection principles summarized here provide a paradigm for designing highly active and selective nanomaterials to achieve electrocatalytic hydrogenation and other organic transformations with fascinating performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈米花完成签到,获得积分10
刚刚
yyjl31完成签到,获得积分10
刚刚
Simon_chat完成签到,获得积分10
刚刚
Aprilzhou完成签到,获得积分10
1秒前
jjy发布了新的文献求助10
1秒前
完美世界应助科研通管家采纳,获得10
4秒前
摆渡人发布了新的文献求助10
6秒前
jjy完成签到,获得积分10
7秒前
12秒前
liguanyu1078完成签到,获得积分10
13秒前
摆渡人完成签到,获得积分10
15秒前
刘善宁完成签到 ,获得积分10
23秒前
明亮的代灵完成签到 ,获得积分10
35秒前
陌子完成签到 ,获得积分10
35秒前
冰洁完成签到 ,获得积分10
37秒前
后浪完成签到 ,获得积分10
44秒前
宗气完成签到,获得积分10
48秒前
孤独乐瑶完成签到 ,获得积分10
49秒前
张泽崇应助zhangn090采纳,获得10
59秒前
难过的糜完成签到,获得积分10
1分钟前
Upupup完成签到 ,获得积分10
1分钟前
亮总完成签到 ,获得积分10
1分钟前
忍忍发布了新的文献求助10
1分钟前
海鹏完成签到 ,获得积分10
1分钟前
老木虫完成签到,获得积分10
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
bing完成签到 ,获得积分10
1分钟前
忍忍完成签到,获得积分10
1分钟前
123完成签到,获得积分20
1分钟前
读行千万完成签到 ,获得积分20
1分钟前
隐形曼青应助123采纳,获得10
1分钟前
jason完成签到,获得积分10
1分钟前
2分钟前
LIVE完成签到,获得积分10
2分钟前
于文志完成签到 ,获得积分0
2分钟前
娜娜子完成签到 ,获得积分10
2分钟前
孔雀翎完成签到,获得积分10
2分钟前
李天恩完成签到 ,获得积分10
2分钟前
stokis03完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Gymnastik für die Jugend 600
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2384446
求助须知:如何正确求助?哪些是违规求助? 2091317
关于积分的说明 5257975
捐赠科研通 1818215
什么是DOI,文献DOI怎么找? 906953
版权声明 559082
科研通“疑难数据库(出版商)”最低求助积分说明 484280