激光雷达
测距
光学
带宽(计算)
频率梳
巨量平行
连续波
时间分辨率
遥感
物理
激光器
计算机科学
电信
地质学
并行计算
作者
Bibo He,Chenbo Zhang,Jiachuan Yang,Nuo Chen,Xuanjian He,Jinming Tao,Zhike Zhang,Tao Chu,Zhangyuan Chen,Xiaopeng Xie
出处
期刊:Optics Letters
[Optica Publishing Group]
日期:2023-06-14
卷期号:48 (13): 3621-3621
被引量:13
摘要
Frequency-modulated continuous wave (FMCW) light detection and ranging (lidar) is a promising solution for three-dimensional (3D) imaging and autonomous driving. This technique maps range and velocity measurement to frequency counting via coherent detection. Compared with single-channel FMCW lidar, multi-channel FMCW lidar can greatly improve the measurement rate. A chip-scale soliton micro-comb is currently used in FMCW lidar to enable multi-channel parallel ranging and significantly increase the measurement rate. However, its range resolution is limited due to the soliton comb having only a few-GHz frequency sweep bandwidth. To overcome this limitation, we propose using a cascaded modulator electro-optic (EO) frequency comb for massively parallel FMCW lidar. We demonstrate a 31-channel FMCW lidar with a bulk EO frequency comb and a 19-channel FMCW lidar using an integrated thin-film lithium niobate (TFLN) EO frequency comb. Both systems have a sweep bandwidth of up to 15 GHz for each channel, corresponding to a 1-cm range resolution. We also analyze the limiting factors of the sweep bandwidth in 3D imaging and perform 3D imaging for a specific target. The measurement rate achieved is over 12 megapixels per second, which verifies its feasibility for massively parallel ranging. Our approach has the potential to greatly benefit 3D imaging in fields where high range resolution is required, such as in criminal investigation and precision machining.
科研通智能强力驱动
Strongly Powered by AbleSci AI