人工智能
计算机科学
分割
特征(语言学)
背景(考古学)
卷积神经网络
模式识别(心理学)
块(置换群论)
卷积(计算机科学)
比例(比率)
计算机视觉
人工神经网络
数学
地图学
古生物学
哲学
语言学
几何学
生物
地理
作者
Dangguo Shao,Lifan Ren,Lei Ma
出处
期刊:Biomedicines
[Multidisciplinary Digital Publishing Institute]
日期:2023-06-16
卷期号:11 (6): 1733-1733
被引量:6
标识
DOI:10.3390/biomedicines11061733
摘要
Segmentation of skin lesion images facilitates the early diagnosis of melanoma. However, this remains a challenging task due to the diversity of target scales, irregular segmentation shapes, low contrast, and blurred boundaries of dermatological graphics. This paper proposes a multi-scale feature fusion network (MSF-Net) based on comprehensive attention convolutional neural network (CA-Net). We introduce the spatial attention mechanism in the convolution block through the residual connection to focus on the key regions. Meanwhile, Multi-scale Dilated Convolution Modules (MDC) and Multi-scale Feature Fusion Modules (MFF) are introduced to extract context information across scales and adaptively adjust the receptive field size of the feature map. We conducted many experiments on the public data set ISIC2018 to verify the validity of MSF-Net. The ablation experiment demonstrated the effectiveness of our three modules. The comparison experiment with the existing advanced network confirms that MSF-Net can achieve better segmentation under fewer parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI